About the Project

Bailey bilateral summations

AdvancedHelp

(0.001 seconds)

1—10 of 69 matching pages

1: 17.8 Special Cases of ψ r r Functions
§17.8 Special Cases of ψ r r Functions
Ramanujan’s ψ 1 1 Summation
17.8.2 ψ 1 1 ( a b ; q , z ) = ( q , b / a , a z , q / ( a z ) ; q ) ( b , q / a , z , b / ( a z ) ; q ) , | b / a | < | z | < 1 .
Bailey’s Bilateral Summations
For similar formulas see Verma and Jain (1983).
2: 17.18 Methods of Computation
§17.18 Methods of Computation
The two main methods for computing basic hypergeometric functions are: (1) numerical summation of the defining series given in §§17.4(i) and 17.4(ii); (2) modular transformations. …
3: 17.1 Special Notation
§17.1 Special Notation
The main functions treated in this chapter are the basic hypergeometric (or q -hypergeometric) function ϕ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , the bilateral basic hypergeometric (or bilateral q -hypergeometric) function ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , and the q -analogs of the Appell functions Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) , Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) , Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) , and Φ ( 4 ) ( a , b ; c , c ; q ; x , y ) . … A slightly different notation is that in Bailey (1964) and Slater (1966); see §17.4(i). …
4: 17.12 Bailey Pairs
§17.12 Bailey Pairs
Bailey Transform
Bailey Pairs
Weak Bailey Lemma
Strong Bailey Lemma
5: 17.10 Transformations of ψ r r Functions
§17.10 Transformations of ψ r r Functions
Bailey’s ψ 2 2 Transformations
17.10.1 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , d / a , c / b , d q / ( a b z ) ; q ) ( z , d , q / b , c d / ( a b z ) ; q ) ψ 2 2 ( a , a b z / d a z , c ; q , d a ) ,
17.10.2 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , b z , c q / ( a b z ) , d q / ( a b z ) ; q ) ( q / a , q / b , c , d ; q ) ψ 2 2 ( a b z / c , a b z / d a z , b z ; q , c d a b z ) .
17.10.3 ψ 8 8 ( q a 1 2 , q a 1 2 , c , d , e , f , a q n , q n a 1 2 , a 1 2 , a q / c , a q / d , a q / e , a q / f , q n + 1 , a q n + 1 ; q , a 2 q 2 n + 2 c d e f ) = ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n ( q / c , q / d , a q / e , a q / f ; q ) n ψ 4 4 ( e , f , a q n + 1 / ( c d ) , q n a q / c , a q / d , q n + 1 , e f / ( a q n ) ; q , q ) ,
6: 16.4 Argument Unity
See Bailey (1964, pp. 19–22). … See Raynal (1979), Wilson (1978), and Bailey (1964). … See Bailey (1964, §4.4(4)). …
§16.4(v) Bilateral Series
Denote, formally, the bilateral hypergeometric function …
7: 17 q-Hypergeometric and Related Functions
8: 17.4 Basic Hypergeometric Functions
§17.4 Basic Hypergeometric Functions
It is slightly at variance with the notation in Bailey (1964) and Slater (1966). …
§17.4(ii) ψ s r Functions
17.4.3 ψ s r ( a 1 , a 2 , , a r b 1 , b 2 , , b s ; q , z ) = ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) = n = ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n = n = 0 ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n + n = 1 ( q / b 1 , q / b 2 , , q / b s ; q ) n ( q / a 1 , q / a 2 , , q / a r ; q ) n ( b 1 b 2 b s a 1 a 2 a r z ) n .
9: Bibliography B
  • D. H. Bailey (1995) A Fortran-90 based multiprecision system. ACM Trans. Math. Software 21 (4), pp. 379–387.
  • W. N. Bailey (1928) Products of generalized hypergeometric series. Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • W. N. Bailey (1929) Transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • W. N. Bailey (1964) Generalized Hypergeometric Series. Stechert-Hafner, Inc., New York.
  • 10: 4.48 Software
  • Bailey (1993). Fortran.

  • See also Bailey (1995), Hull and Abrham (1986), Xu and Li (1994). …