About the Project

Bailey 2ψ2 transformations

AdvancedHelp

(0.004 seconds)

1—10 of 816 matching pages

1: 1.14 Integral Transforms
§1.14 Integral Transforms
§1.14(i) Fourier Transform
§1.14(iii) Laplace Transform
Fourier Transform
Laplace Transform
2: 17.12 Bailey Pairs
§17.12 Bailey Pairs
Bailey Transform
Bailey Pairs
Weak Bailey Lemma
Strong Bailey Lemma
3: 16.6 Transformations of Variable
§16.6 Transformations of Variable
Quadratic
Cubic
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
4: 17 q-Hypergeometric and Related Functions
5: 17.10 Transformations of ψ r r Functions
§17.10 Transformations of ψ r r Functions
Bailey’s ψ 2 2 Transformations
17.10.1 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , d / a , c / b , d q / ( a b z ) ; q ) ( z , d , q / b , c d / ( a b z ) ; q ) ψ 2 2 ( a , a b z / d a z , c ; q , d a ) ,
Other Transformations
17.10.3 ψ 8 8 ( q a 1 2 , q a 1 2 , c , d , e , f , a q n , q n a 1 2 , a 1 2 , a q / c , a q / d , a q / e , a q / f , q n + 1 , a q n + 1 ; q , a 2 q 2 n + 2 c d e f ) = ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n ( q / c , q / d , a q / e , a q / f ; q ) n ψ 4 4 ( e , f , a q n + 1 / ( c d ) , q n a q / c , a q / d , q n + 1 , e f / ( a q n ) ; q , q ) ,
6: Bibliography B
  • D. H. Bailey (1995) A Fortran-90 based multiprecision system. ACM Trans. Math. Software 21 (4), pp. 379–387.
  • W. N. Bailey (1928) Products of generalized hypergeometric series. Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • W. N. Bailey (1929) Transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • J. L. Burchnall and T. W. Chaundy (1948) The hypergeometric identities of Cayley, Orr, and Bailey. Proc. London Math. Soc. (2) 50, pp. 56–74.
  • 7: 17.8 Special Cases of ψ r r Functions
    17.8.3 n = ( 1 ) n q n ( 3 n 1 ) / 2 z 3 n ( 1 + z q n ) = ( q , z , q / z ; q ) ( q z 2 , q / z 2 ; q 2 ) .
    Bailey’s Bilateral Summations
    17.8.4 ψ 2 2 ( b , c ; a q / b , a q / c ; q , a q / ( b c ) ) = ( a q / ( b c ) ; q ) ( a q 2 / b 2 , a q 2 / c 2 , q 2 , a q , q / a ; q 2 ) ( a q / b , a q / c , q / b , q / c , a q / ( b c ) ; q ) ,
    17.8.6 ψ 4 4 ( q a 1 2 , b , c , d a 1 2 , a q / b , a q / c , a q / d ; q , q a 3 2 b c d ) = ( a q , a q / ( b c ) , a q / ( b d ) , a q / ( c d ) , q a 1 2 / b , q a 1 2 / c , q a 1 2 / d , q , q / a ; q ) ( a q / b , a q / c , a q / d , q / b , q / c , q / d , q a 1 2 , q a 1 2 , q a 3 2 / ( b c d ) ; q ) ,
    17.8.8 ψ 2 2 ( b 2 , b 2 / c q , c q ; q 2 , c q 2 / b 2 ) = 1 2 ( q 2 , q b 2 , q / b 2 , c q / b 2 ; q 2 ) ( c q , c q 2 / b 2 , q 2 / b 2 , c / b 2 ; q 2 ) ( ( c q / b ; q ) ( b q ; q ) + ( c q / b ; q ) ( b q ; q ) ) , | c q 2 | < | b 2 | .
    8: Bibliography
  • F. V. Andreev and A. V. Kitaev (2002) Transformations R S 4 2 ( 3 ) of the ranks 4 and algebraic solutions of the sixth Painlevé equation. Comm. Math. Phys. 228 (1), pp. 151–176.
  • G. E. Andrews and A. Berkovich (1998) A trinomial analogue of Bailey’s lemma and N = 2 superconformal invariance. Comm. Math. Phys. 192 (2), pp. 245–260.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • G. E. Andrews (2000) Umbral calculus, Bailey chains, and pentagonal number theorems. J. Combin. Theory Ser. A 91 (1-2), pp. 464–475.
  • G. E. Andrews (2001) Bailey’s Transform, Lemma, Chains and Tree. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), J. Bustoz, M. E. H. Ismail, and S. K. Suslov (Eds.), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 1–22.
  • 9: 17.1 Special Notation
    The main functions treated in this chapter are the basic hypergeometric (or q -hypergeometric) function ϕ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , the bilateral basic hypergeometric (or bilateral q -hypergeometric) function ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , and the q -analogs of the Appell functions Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) , Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) , Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) , and Φ ( 4 ) ( a , b ; c , c ; q ; x , y ) . … Another function notation used is the “idem” function:
    f ( χ 1 ; χ 2 , , χ n ) + idem ( χ 1 ; χ 2 , , χ n ) = j = 1 n f ( χ j ; χ 1 , χ 2 , , χ j 1 , χ j + 1 , , χ n ) .
    A slightly different notation is that in Bailey (1964) and Slater (1966); see §17.4(i). Fine (1988) uses F ( a , b ; t : q ) for a particular specialization of a ϕ 1 2 function.
    10: 16.4 Argument Unity
    See Bailey (1964, pp. 19–22). … See Raynal (1979), Wilson (1978), and Bailey (1964). … See Bailey (1964, §4.4(4)). Transformations for both balanced F 3 4 ( 1 ) and very well-poised F 6 7 ( 1 ) are included in Bailey (1964, pp. 56–63). …See Bailey (1964, §§4.3(7) and 7.6(1)) for the transformation formulas and Wilson (1978) for contiguous relations. …