About the Project

Askey polynomials

AdvancedHelp

(0.004 seconds)

11—20 of 44 matching pages

11: Bibliography Z
  • J. Zeng (1992) Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials. Proc. London Math. Soc. (3) 65 (1), pp. 1–22.
  • A. S. Zhedanov (1991) “Hidden symmetry” of Askey-Wilson polynomials. Theoret. and Math. Phys. 89 (2), pp. 1146–1157.
  • 12: Errata
  • Equation (18.28.1)
    18.28.1 p n ( x ) = p n ( x ; a , b , c , d | q ) = a n = 0 n q ( a b q , a c q , a d q ; q ) n ( q n , a b c d q n 1 ; q ) ( q ; q ) j = 0 1 ( 1 2 a q j x + a 2 q 2 j ) ,
    18.28.1_5 R n ( z ) = R n ( z ; a , b , c , d | q ) = p n ( 1 2 ( z + z 1 ) ; a , b , c , d | q ) a n ( a b , a c , a d ; q ) n = ϕ 3 4 ( q n , a b c d q n 1 , a z , a z 1 a b , a c , a d ; q , q )

    Previously we presented all the information of these formulas in one equation

    p n ( cos θ ) = p n ( cos θ ; a , b , c , d | q ) = a n = 0 n q ( a b q , a c q , a d q ; q ) n ( q n , a b c d q n 1 ; q ) ( q ; q ) j = 0 1 ( 1 2 a q j cos θ + a 2 q 2 j ) = a n ( a b , a c , a d ; q ) n ϕ 3 4 ( q n , a b c d q n 1 , a e i θ , a e i θ a b , a c , a d ; q , q ) .
  • 13: 18.30 Associated OP’s
    However, if the recurrence coefficients are polynomial, or rational, functions of n , polynomials of degree n may be well defined for c provided that A n + c B n + c 0 , n = 0 , 1 , Askey and Wimp (1984). …
    18.30.17 𝒫 n λ ( x ; ϕ , c ) 𝒫 m λ ( x ; ϕ , c ) w ( λ ) ( x , ϕ , c ) d x = Γ ( n + c + 2 λ ) Γ ( c + 1 ) ( c + 1 ) n δ n , m , 0 < ϕ < π , c + 2 λ > 0 , c 0 or 0 < ϕ < π , c + 2 λ 1 , c > 1 ,
    18.30.19 L n λ ( x ; c ) = lim ϕ 0 𝒫 n ( λ + 1 ) / 2 ( x 2 sin ϕ ; ϕ , c ) ,
    18.30.20 H n ( x ; c ) = ( c + 1 ) n lim λ λ n / 2 𝒫 n λ ( x λ 1 / 2 ; π / 2 , c ) .
    For associated Askey–Wilson polynomials see Rahman (2001). …
    14: Bibliography N
  • M. Noumi and J. V. Stokman (2004) Askey-Wilson polynomials: an affine Hecke algebra approach. In Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, pp. 111–144.
  • 15: 18.35 Pollaczek Polynomials
    The three types of Pollaczek polynomials were successively introduced in Pollaczek (1949a, b, 1950), see also Erdélyi et al. (1953b, p.219) and, for type 1 and 2, Szegö (1950) and Askey (1982b). …
    18.35.10 𝒫 n λ ( x ; ϕ , c ) = P n ( λ ) ( cos ϕ ; 0 , x sin ϕ , c ) .
    See Szegő (1975, Appendix, §§ 1–5), Askey (1982b), and Ismail (2009, §§ 5.4–5.5) for further results on type 2 Pollaczek polynomials. …
    16: 18.4 Graphics
    See accompanying text
    Figure 18.4.1: Jacobi polynomials P n ( 1.5 , 0.5 ) ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.2: Jacobi polynomials P n ( 1.25 , 0.75 ) ( x ) , n = 7 , 8 . …See also Askey (1990). Magnify
    See accompanying text
    Figure 18.4.4: Legendre polynomials P n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.7: Monic Hermite polynomials h n ( x ) = 2 n H n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    17: 18.37 Classical OP’s in Two or More Variables
    In one variable they are essentially ultraspherical, Jacobi, continuous q -ultraspherical, or Askey–Wilson polynomials. …
    18: Bibliography C
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n α ( x )  as the index α  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • CAOP (website) Work Group of Computational Mathematics, University of Kassel, Germany.
  • L. Chihara (1987) On the zeros of the Askey-Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal. 18 (1), pp. 191–207.
  • 19: 18.19 Hahn Class: Definitions
    §18.19 Hahn Class: Definitions
    The Askey scheme extends the three families of classical OP’s (Jacobi, Laguerre and Hermite) with eight further families of OP’s for which the role of the differentiation operator d d x in the case of the classical OP’s is played by a suitable difference operator. …In addition to the limit relations in §18.7(iii) there are limit relations involving the further families in the Askey scheme, see §§18.21(ii) and 18.26(ii). The Askey scheme, depicted in Figure 18.21.1, gives a graphical representation of these limits. … Tables 18.19.1 and 18.19.2 provide definitions via orthogonality and standardization (§§18.2(i), 18.2(iii)) for the Hahn polynomials Q n ( x ; α , β , N ) , Krawtchouk polynomials K n ( x ; p , N ) , Meixner polynomials M n ( x ; β , c ) , and Charlier polynomials C n ( x ; a ) . …
    20: Bibliography I
  • A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna (1991) On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65 (2), pp. 151–175.
  • M. E. H. Ismail and D. R. Masson (1994) q -Hermite polynomials, biorthogonal rational functions, and q -beta integrals. Trans. Amer. Math. Soc. 346 (1), pp. 63–116.
  • M. E. H. Ismail (1986) Asymptotics of the Askey-Wilson and q -Jacobi polynomials. SIAM J. Math. Anal. 17 (6), pp. 1475–1482.
  • M. E. H. Ismail (2009) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.