Askey?Wilson polynomials ♦ 4 matching pages ♦ SearchAdvancedHelp (0.008 seconds) 4 matching pages 1: 18.29 Asymptotic Approximations for q -Hahn and Askey–Wilson Classes … ►For Askey–Wilson p n ( cos θ ; a , b , c , d | q ) the leading term is given by … 2: 18.28 Askey–Wilson Class … ► 18.28.1 p n ( x ) = p n ( x ; a , b , c , d | q ) = a − n ∑ ℓ = 0 n q ℓ ( a b q ℓ , a c q ℓ , a d q ℓ ; q ) n − ℓ ( q − n , a b c d q n − 1 ; q ) ℓ ( q ; q ) ℓ ∏ j = 0 ℓ − 1 ( 1 − 2 a q j x + a 2 q 2 j ) , ⓘ Defines: p n ( x ; a , b , c , d | q ) : Askey–Wilson polynomial Symbols: ( a ; q ) n : q -Pochhammer symbol (or q -shifted factorial), ( a 1 , a 2 , … , a r ; q ) n : multiple q -Pochhammer symbol, p n ( x ) : polynomial of degree n , q : real variable, ℓ : nonnegative integer, n : nonnegative integer and x : real variable Referenced by: (18.28.29), §18.28(ii), §18.38(iii), Erratum (V1.2.0) for Equation (18.28.1) Permalink: http://dlmf.nist.gov/18.28.E1 Encodings: pMML, png, TeX See also: Annotations for §18.28(ii), §18.28 and Ch.18 ► 18.28.1_5 R n ( z ) = R n ( z ; a , b , c , d | q ) = p n ( 1 2 ( z + z − 1 ) ; a , b , c , d | q ) a − n ( a b , a c , a d ; q ) n = ϕ 3 4 ( q − n , a b c d q n − 1 , a z , a z − 1 a b , a c , a d ; q , q ) . ⓘ Symbols: p n ( x ; a , b , c , d | q ) : Askey–Wilson polynomial, ϕ s r + 1 ( a 0 , … , a r ; b 1 , … , b s ; q , z ) or ϕ s r + 1 ( a 0 , … , a r b 1 , … , b s ; q , z ) : basic hypergeometric (or q -hypergeometric) function, ( a 1 , a 2 , … , a r ; q ) n : multiple q -Pochhammer symbol, z : complex variable, q : real variable and n : nonnegative integer Source: Koornwinder and Mazzocco (2018, (1)) Referenced by: (18.28.26), §18.28(ii), §18.28(ix), §18.28(x), §18.38(iii), Erratum (V1.2.0) §18.27 Permalink: http://dlmf.nist.gov/18.28.E1_5 Encodings: pMML, png, TeX Addition (effective with 1.2.0): This equation was added. See also: Annotations for §18.28(ii), §18.28 and Ch.18 ►The polynomials p n ( x ; a , b , c , d | q ) are symmetric in the parameters a , b , c , d . … ► 18.28.7 Q n ( cos θ ; a , b | q ) = p n ( cos θ ; a , b , 0 , 0 | q ) = a − n ∑ ℓ = 0 n q ℓ ( a b q ℓ ; q ) n − ℓ ( q − n ; q ) ℓ ( q ; q ) ℓ ∏ j = 0 ℓ − 1 ( 1 − 2 a q j cos θ + a 2 q 2 j ) = ( a b ; q ) n a n ϕ 2 3 ( q − n , a e i θ , a e − i θ a b , 0 ; q , q ) = ( b e − i θ ; q ) n e i n θ ϕ 1 2 ( q − n , a e i θ b − 1 q 1 − n e i θ ; q , b − 1 q e − i θ ) . ⓘ Defines: Q n ( x ; a , b | q ) : Al-Salam–Chihara polynomial Symbols: p n ( x ; a , b , c , d | q ) : Askey–Wilson polynomial, cos z : cosine function, e : base of natural logarithm, i : imaginary unit, ( a ; q ) n : q -Pochhammer symbol (or q -shifted factorial), ϕ s r + 1 ( a 0 , … , a r ; b 1 , … , b s ; q , z ) or ϕ s r + 1 ( a 0 , … , a r b 1 , … , b s ; q , z ) : basic hypergeometric (or q -hypergeometric) function, q : real variable, ℓ : nonnegative integer, n : nonnegative integer and x : real variable Permalink: http://dlmf.nist.gov/18.28.E7 Encodings: pMML, png, TeX See also: Annotations for §18.28(iii), §18.28 and Ch.18 … ► 18.28.29 lim q → 1 p n ( 1 − 1 2 x ( 1 − q ) 2 ; q a , q b , q c , q d | q ) ( 1 − q ) 3 n = W n ( x ; a , b , c , d ) . ⓘ Symbols: p n ( x ; a , b , c , d | q ) : Askey–Wilson polynomial, W n ( x ; a , b , c , d ) : Wilson polynomial, q : real variable, n : nonnegative integer and x : real variable Proof sketch: Substitute (18.28.1) in the left-hand side, take the limit, and use (18.26.1). Notes: Another form of this limit is given in Koekoek et al. (2010, (14.1.21)). Referenced by: §18.28(x) Permalink: http://dlmf.nist.gov/18.28.E29 Encodings: pMML, png, TeX See also: Annotations for §18.28(x), §18.28(x), §18.28 and Ch.18 … 3: 18.1 Notation … ► Askey–Wilson: p n ( x ; a , b , c , d | q ) . … 4: Errata … ► Equation (18.28.1) 18.28.1 p n ( x ) = p n ( x ; a , b , c , d | q ) = a − n ∑ ℓ = 0 n q ℓ ( a b q ℓ , a c q ℓ , a d q ℓ ; q ) n − ℓ ( q − n , a b c d q n − 1 ; q ) ℓ ( q ; q ) ℓ ∏ j = 0 ℓ − 1 ( 1 − 2 a q j x + a 2 q 2 j ) , 18.28.1_5 R n ( z ) = R n ( z ; a , b , c , d | q ) = p n ( 1 2 ( z + z − 1 ) ; a , b , c , d | q ) a − n ( a b , a c , a d ; q ) n = ϕ 3 4 ( q − n , a b c d q n − 1 , a z , a z − 1 a b , a c , a d ; q , q ) Previously we presented all the information of these formulas in one equation p n ( cos θ ) = p n ( cos θ ; a , b , c , d | q ) = a − n ∑ ℓ = 0 n q ℓ ( a b q ℓ , a c q ℓ , a d q ℓ ; q ) n − ℓ ( q − n , a b c d q n − 1 ; q ) ℓ ( q ; q ) ℓ ∏ j = 0 ℓ − 1 ( 1 − 2 a q j cos θ + a 2 q 2 j ) = a − n ( a b , a c , a d ; q ) n ϕ 3 4 ( q − n , a b c d q n − 1 , a e i θ , a e − i θ a b , a c , a d ; q , q ) . …