# Appell functions

(0.002 seconds)

## 1—10 of 18 matching pages

##### 1: 16.13 Appell Functions
###### §16.13 AppellFunctions
16.13.1 ${F_{1}}\left(\alpha;\beta,\beta^{\prime};\gamma;x,y\right)=\sum_{m,n=0}^{% \infty}\frac{{\left(\alpha\right)_{m+n}}{\left(\beta\right)_{m}}{\left(\beta^{% \prime}\right)_{n}}}{{\left(\gamma\right)_{m+n}}m!n!}x^{m}y^{n},$ $\max\left(|x|,|y|\right)<1$,
16.13.2 ${F_{2}}\left(\alpha;\beta,\beta^{\prime};\gamma,\gamma^{\prime};x,y\right)=% \sum_{m,n=0}^{\infty}\frac{{\left(\alpha\right)_{m+n}}{\left(\beta\right)_{m}}% {\left(\beta^{\prime}\right)_{n}}}{{\left(\gamma\right)_{m}}{\left(\gamma^{% \prime}\right)_{n}}m!n!}x^{m}y^{n},$ $|x|+|y|<1$,
16.13.4 ${F_{4}}\left(\alpha,\beta;\gamma,\gamma^{\prime};x,y\right)=\sum_{m,n=0}^{% \infty}\frac{{\left(\alpha\right)_{m+n}}{\left(\beta\right)_{m+n}}}{{\left(% \gamma\right)_{m}}{\left(\gamma^{\prime}\right)_{n}}m!n!}x^{m}y^{n},$ $\sqrt{|x|}+\sqrt{|y|}<1$.
##### 2: 16.24 Physical Applications
###### §16.24(i) Random Walks
Generalized hypergeometric functions and Appell functions appear in the evaluation of the so-called Watson integrals which characterize the simplest possible lattice walks. …
###### §16.24(ii) Loop Integrals in Feynman Diagrams
Appell functions are used for the evaluation of one-loop integrals in Feynman diagrams. …
##### 3: 16.16 Transformations of Variables
###### §16.16(i) Reduction Formulas
16.16.3 ${F_{2}}\left(\alpha;\beta,\beta^{\prime};\gamma,\alpha;x,y\right)=(1-y)^{-% \beta^{\prime}}{F_{1}}\left(\beta;\alpha-\beta^{\prime},\beta^{\prime};\gamma;% x,\frac{x}{1-y}\right),$
For quadratic transformations of Appell functions see Carlson (1976).
##### 4: 16.15 Integral Representations and Integrals
###### §16.15 Integral Representations and Integrals
16.15.1 ${F_{1}}\left(\alpha;\beta,\beta^{\prime};\gamma;x,y\right)=\frac{\Gamma\left(% \gamma\right)}{\Gamma\left(\alpha\right)\Gamma\left(\gamma-\alpha\right)}\int_% {0}^{1}\frac{u^{\alpha-1}(1-u)^{\gamma-\alpha-1}}{(1-ux)^{\beta}(1-uy)^{\beta^% {\prime}}}\,\mathrm{d}u,$ $\Re\alpha>0$, $\Re\left(\gamma-\alpha\right)>0$,
These representations can be used to derive analytic continuations of the Appell functions, including convergent series expansions for large $x$, large $y$, or both. For inverse Laplace transforms of Appell functions see Prudnikov et al. (1992b, §3.40).
##### 5: 17.1 Special Notation
The main functions treated in this chapter are the basic hypergeometric (or $q$-hypergeometric) function ${{}_{r}\phi_{s}}\left(a_{1},a_{2},\dots,a_{r};b_{1},b_{2},\dots,b_{s};q,z\right)$, the bilateral basic hypergeometric (or bilateral $q$-hypergeometric) function ${{}_{r}\psi_{s}}\left(a_{1},a_{2},\dots,a_{r};b_{1},b_{2},\dots,b_{s};q,z\right)$, and the $q$-analogs of the Appell functions $\Phi^{(1)}\left(a;b,b^{\prime};c;q;x,y\right)$, $\Phi^{(2)}\left(a;b,b^{\prime};c,c^{\prime};q;x,y\right)$, $\Phi^{(3)}\left(a,a^{\prime};b,b^{\prime};c;q;x,y\right)$, and $\Phi^{(4)}\left(a,b;c,c^{\prime};q;x,y\right)$. …
##### 6: 17.11 Transformations of $q$-Appell Functions
###### §17.11 Transformations of $q$-AppellFunctions
17.11.1 $\Phi^{(1)}\left(a;b,b^{\prime};c;q;x,y\right)=\frac{\left(a,bx,b^{\prime}y;q% \right)_{\infty}}{\left(c,x,y;q\right)_{\infty}}{{}_{3}\phi_{2}}\left({c/a,x,y% \atop bx,b^{\prime}y};q,a\right),$
17.11.2 $\Phi^{(2)}\left(a;b,b^{\prime};c,c^{\prime};q;x,y\right)=\frac{\left(b,ax;q% \right)_{\infty}}{\left(c,x;q\right)_{\infty}}\sum_{n,r\geqq 0}\frac{\left(a,b% ^{\prime};q\right)_{n}\left(c/b,x;q\right)_{r}b^{r}y^{n}}{\left(q,c^{\prime};q% \right)_{n}\left(q;q\right)_{r}\left(ax;q\right)_{n+r}},$
17.11.3 $\Phi^{(3)}\left(a,a^{\prime};b,b^{\prime};c;q;x,y\right)=\frac{\left(a,bx;q% \right)_{\infty}}{\left(c,x;q\right)_{\infty}}\sum_{n,r\geqq 0}\frac{\left(a^{% \prime},b^{\prime};q\right)_{n}\left(x;q\right)_{r}\left(c/a;q\right)_{n+r}a^{% r}y^{n}}{\left(q,c/a;q\right)_{n}\left(q,bx;q\right)_{r}}.$
##### 7: 19.5 Maclaurin and Related Expansions
###### §19.5 Maclaurin and Related Expansions
19.5.4_1 $F\left(\phi,k\right)=\sum_{m=0}^{\infty}\frac{{\left(\tfrac{1}{2}\right)_{m}}{% \sin}^{2m+1}\phi}{(2m+1)m!}{{}_{2}F_{1}}\left({m+\tfrac{1}{2},\tfrac{1}{2}% \atop m+\tfrac{3}{2}};{\sin}^{2}{\phi}\right)k^{2m}=\sin\phi\,{F_{1}}\left(% \tfrac{1}{2};\tfrac{1}{2},\tfrac{1}{2};\tfrac{3}{2};{\sin}^{2}\phi,k^{2}{\sin}% ^{2}\phi\right),$
19.5.4_3 $\Pi\left(\phi,\alpha^{2},k\right)=\sum_{m=0}^{\infty}\frac{{\left(\tfrac{1}{2}% \right)_{m}}{\sin}^{2m+1}\phi}{(2m+1)m!}{F_{1}}\left(m+\tfrac{1}{2};\tfrac{1}{% 2},1;m+\tfrac{3}{2};{\sin}^{2}\phi,\alpha^{2}{\sin}^{2}\phi\right)k^{2m},$
where ${F_{1}}\left(\alpha;\beta,\beta^{\prime};\gamma;x,y\right)$ is an Appell function16.13). …
##### 8: 16.14 Partial Differential Equations
###### §16.14(i) AppellFunctions
In addition to the four Appell functions there are $24$ other sums of double series that cannot be expressed as a product of two ${{}_{2}F_{1}}$ functions, and which satisfy pairs of linear partial differential equations of the second order. …
##### 9: 17.4 Basic Hypergeometric Functions
###### §17.4(iii) $q$-AppellFunctions
17.4.5 $\Phi^{(1)}\left(a;b,b^{\prime};c;q;x,y\right)=\sum_{m,n\geq 0}\frac{\left(a;q% \right)_{m+n}\left(b;q\right)_{m}\left(b^{\prime};q\right)_{n}x^{m}y^{n}}{% \left(q;q\right)_{m}\left(q;q\right)_{n}\left(c;q\right)_{m+n}},$
17.4.6 $\Phi^{(2)}\left(a;b,b^{\prime};c,c^{\prime};q;x,y\right)=\sum_{m,n\geq 0}\frac% {\left(a;q\right)_{m+n}\left(b;q\right)_{m}\left(b^{\prime};q\right)_{n}x^{m}y% ^{n}}{\left(q,c;q\right)_{m}\left(q,c^{\prime};q\right)_{n}},$
17.4.7 $\Phi^{(3)}\left(a,a^{\prime};b,b^{\prime};c;q;x,y\right)=\sum_{m,n\geq 0}\frac% {\left(a,b;q\right)_{m}\left(a^{\prime},b^{\prime};q\right)_{n}x^{m}y^{n}}{% \left(q;q\right)_{m}\left(q;q\right)_{n}\left(c;q\right)_{m+n}},$
17.4.8 $\Phi^{(4)}\left(a,b;c,c^{\prime};q;x,y\right)=\sum_{m,n\geq 0}\frac{\left(a,b;% q\right)_{m+n}x^{m}y^{n}}{\left(q,c;q\right)_{m}\left(q,c^{\prime};q\right)_{n% }}.$
##### 10: 16.1 Special Notation
The main functions treated in this chapter are the generalized hypergeometric function ${{}_{p}F_{q}}\left({a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}};z\right)$, the Appell (two-variable hypergeometric) functions ${F_{1}}\left(\alpha;\beta,\beta^{\prime};\gamma;x,y\right)$, ${F_{2}}\left(\alpha;\beta,\beta^{\prime};\gamma,\gamma^{\prime};x,y\right)$, ${F_{3}}\left(\alpha,\alpha^{\prime};\beta,\beta^{\prime};\gamma;x,y\right)$, ${F_{4}}\left(\alpha,\beta;\gamma,\gamma^{\prime};x,y\right)$, and the Meijer $G$-function ${G^{m,n}_{p,q}}\left(z;{a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}}\right)$. Alternative notations are ${{}_{p}F_{q}}\left({\mathbf{a}\atop\mathbf{b}};z\right)$, ${{}_{p}F_{q}}\left(a_{1},\dots,a_{p};b_{1},\dots,b_{q};z\right)$, and ${{}_{p}F_{q}}\left(\mathbf{a};\mathbf{b};z\right)$ for the generalized hypergeometric function, $F_{1}(\alpha,\beta,\beta^{\prime};\gamma;x,y)$, $F_{2}(\alpha,\beta,\beta^{\prime};\gamma,\gamma^{\prime};x,y)$, $F_{3}(\alpha,\alpha^{\prime},\beta,\beta^{\prime};\gamma;x,y)$, $F_{4}(\alpha,\beta;\gamma,\gamma^{\prime};x,y)$, for the Appell functions, and ${G^{m,n}_{p,q}}\left(z;\mathbf{a};\mathbf{b}\right)$ for the Meijer $G$-function.