Andrews–Askey sum
(0.002 seconds)
10 matching pages
1: 17.6 Function
…
►
Andrews–Askey Sum
…2: 17.7 Special Cases of Higher Functions
3: Richard A. Askey
Profile
Richard A. Askey
…
►Richard A. Askey (b.
…
►Askey received his Ph.
… Andrews and R.
…
► Andrews, B.
…
4: Bibliography
…
►
Ramanujan Revisited.
Academic Press Inc., Boston, MA.
►
Special Functions.
Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge.
…
►
Positive Jacobi polynomial sums. II.
Amer. J. Math. 98 (3), pp. 709–737.
…
►
Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum.
SIAM J. Math. Anal. 5, pp. 119–124.
…
►
Some basic hypergeometric extensions of integrals of Selberg and Andrews.
SIAM J. Math. Anal. 11 (6), pp. 938–951.
…
5: 18.18 Sums
6: 18.38 Mathematical Applications
…
►The Askey–Gasper inequality
►
18.38.3
, , ,
…
►See, for example, Andrews et al. (1999, Chapter 9).
…
7: 14.30 Spherical and Spheroidal Harmonics
…
►See also (34.3.22), and for further related integrals see Askey et al. (1986).
…
►
14.30.8_5
…
►
§14.30(iii) Sums
… ►
14.30.9
…
►See Andrews et al. (1999, Chapter 9).
…
8: Bibliography M
…
►
Associated Wilson polynomials.
Constr. Approx. 7 (4), pp. 521–534.
…
►
On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and coalescence cascade.
Funkcial. Ekvac. 46 (1), pp. 121–171.
…
►
A new symmetry related to for classical basic hypergeometric series.
Adv. in Math. 57 (1), pp. 71–90.
…
►
Analytic Inequalities.
Springer-Verlag, New York.
►
The -analogue of the Laguerre polynomials.
J. Math. Anal. Appl. 81 (1), pp. 20–47.
…
9: Bibliography C
…
►
Work Group of Computational Mathematics, University of Kassel, Germany.
…
►
The hypergeometric function and the -function near their branch points.
Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 63–89.
…
►
On the zeros of the Askey-Wilson polynomials, with applications to coding theory.
SIAM J. Math. Anal. 18 (1), pp. 191–207.
…
►
Approximations and Complex Multiplication According to Ramanujan.
In Ramanujan Revisited (Urbana-Champaign, Ill., 1987), G. E. Andrews, R. A. Askey, B. C. Bernd, K. G. Ramanathan, and R. A. Rankin (Eds.),
pp. 375–472.
…
►
Remarks on the full asymptotic expansion of Feynman parametrized integrals.
Lett. Nuovo Cimento (2) 13 (8), pp. 310–312.
…