About the Project

Aeromexico Airlines Reservation Number %F0%9F%93%9E850.308.302

AdvancedHelp

Did you mean erricolo stirlingses Reservation Number %F0%9F%93%9E850.308.302 ?

(0.004 seconds)

1—10 of 467 matching pages

1: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
2: 34.6 Definition: 9 j Symbol
§34.6 Definition: 9 j Symbol
The 9 j symbol may be defined either in terms of 3 j symbols or equivalently in terms of 6 j symbols:
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
The 9 j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
3: Guide to Searching the DLMF
  • term:

    a textual word, a number, or a math symbol.

  • phrase:

    any double-quoted sequence of textual words and numbers.

  • proximity operator:

    adj, prec/n, and near/n, where n is any positive natural number.

  • $ stands for any number of alphanumeric characters
    (the more conventional * is reserved for the multiplication operator)
    4: 26.6 Other Lattice Path Numbers
    §26.6 Other Lattice Path Numbers
    Delannoy Number D ( m , n )
    Motzkin Number M ( n )
    Narayana Number N ( n , k )
    §26.6(iv) Identities
    5: 26.11 Integer Partitions: Compositions
    c ( n ) denotes the number of compositions of n , and c m ( n ) is the number of compositions into exactly m parts. c ( T , n ) is the number of compositions of n with no 1’s, where again T = { 2 , 3 , 4 , } . … The Fibonacci numbers are determined recursively by …
    26.11.6 c ( T , n ) = F n 1 , n 1 .
    Additional information on Fibonacci numbers can be found in Rosen et al. (2000, pp. 140–145).
    6: 26.5 Lattice Paths: Catalan Numbers
    §26.5 Lattice Paths: Catalan Numbers
    §26.5(i) Definitions
    C ( n ) is the Catalan number. …
    §26.5(ii) Generating Function
    §26.5(iii) Recurrence Relations
    7: 16.7 Relations to Other Functions
    For 3 j , 6 j , 9 j symbols see Chapter 34. Further representations of special functions in terms of F q p functions are given in Luke (1969a, §§6.2–6.3), and an extensive list of F q q + 1 functions with rational numbers as parameters is given in Krupnikov and Kölbig (1997).
    8: 24.15 Related Sequences of Numbers
    §24.15 Related Sequences of Numbers
    §24.15(i) Genocchi Numbers
    §24.15(ii) Tangent Numbers
    §24.15(iii) Stirling Numbers
    §24.15(iv) Fibonacci and Lucas Numbers
    9: 26.14 Permutations: Order Notation
    As an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … The Eulerian number, denoted n k , is the number of permutations in 𝔖 n with exactly k descents. …The Eulerian number n k is equal to the number of permutations in 𝔖 n with exactly k excedances. …
    §26.14(iii) Identities
    10: 26.7 Set Partitions: Bell Numbers
    §26.7 Set Partitions: Bell Numbers
    §26.7(i) Definitions
    §26.7(ii) Generating Function
    §26.7(iii) Recurrence Relation
    §26.7(iv) Asymptotic Approximation