About the Project

Accademia di Belle Arti Vanuzi������������������ ���kaa77788������5fSX

AdvancedHelp

Did you mean academia di Belle Arti janusz������������������ ���27789������5fSX ?

(0.001 seconds)

1—10 of 19 matching pages

1: 26.7 Set Partitions: Bell Numbers
§26.7 Set Partitions: Bell Numbers
§26.7(i) Definitions
§26.7(ii) Generating Function
§26.7(iii) Recurrence Relation
§26.7(iv) Asymptotic Approximation
2: Bibliography Z
  • R. Zanovello (1975) Sul calcolo numerico della funzione di Struve H ν ( z ) . Rend. Sem. Mat. Univ. e Politec. Torino 32, pp. 251–269 (Italian. English summary).
  • R. Zanovello (1977) Integrali di funzioni di Anger, Weber ed Airy-Hardy. Rend. Sem. Mat. Univ. Padova 58, pp. 275–285 (Italian).
  • R. Zanovello (1978) Su un integrale definito del prodotto di due funzioni di Struve. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 112 (1-2), pp. 63–81 (Italian).
  • W. Zudilin (2007) Approximations to -, di- and tri-logarithms. J. Comput. Appl. Math. 202 (2), pp. 450–459.
  • 3: 32.16 Physical Applications
    For applications in 2D quantum gravity and related aspects of the enumerative topology see Di Francesco et al. (1995). …
    4: DLMF Project News
    error generating summary
    5: Bibliography T
  • F. G. Tricomi (1947) Sugli zeri delle funzioni di cui si conosce una rappresentazione asintotica. Ann. Mat. Pura Appl. (4) 26, pp. 283–300 (Italian).
  • F. G. Tricomi (1949) Sul comportamento asintotico dell’ n -esimo polinomio di Laguerre nell’intorno dell’ascissa 4 n . Comment. Math. Helv. 22, pp. 150–167.
  • 6: 33.26 Software
  • Bell and Scott (1980). Fortran.

  • 7: 1.4 Calculus of One Variable
    Faà Di Bruno’s Formula
    8: 13.32 Software
  • Bell and Scott (1980). Fortran.

  • 9: 26.1 Special Notation
    ( m n )

    binomial coefficient.

    B ( n )

    Bell number.

    10: Bibliography D
  • P. Di Francesco, P. Ginsparg, and J. Zinn-Justin (1995) 2 D gravity and random matrices. Phys. Rep. 254 (1-2), pp. 1–133.