About the Project

Abel%20means

AdvancedHelp

(0.002 seconds)

1—10 of 155 matching pages

1: 19.8 Quadratic Transformations
§19.8(i) Gauss’s Arithmetic-Geometric Mean (AGM)
As n , a n and g n converge to a common limit M ( a 0 , g 0 ) called the AGM (Arithmetic-Geometric Mean) of a 0 and g 0 . …showing that the convergence of c n to 0 and of a n and g n to M ( a 0 , g 0 ) is quadratic in each case. … Again, p n and ε n converge quadratically to M ( a 0 , g 0 ) and 0, respectively, and Q n converges to 0 faster than quadratically. …
2: 1.15 Summability Methods
Abel Summability
Abel Means
A ( r , θ ) is a harmonic function in polar coordinates (1.9.27), and … If f ( θ ) is periodic and integrable on [ 0 , 2 π ] , then as n the Abel means A ( r , θ ) and the (C,1) means σ n ( θ ) converge to …
Abel Summability
3: 22.18 Mathematical Applications
§22.18(iv) Elliptic Curves and the Jacobi–Abel Addition Theorem
For any two points ( x 1 , y 1 ) and ( x 2 , y 2 ) on this curve, their sum ( x 3 , y 3 ) , always a third point on the curve, is defined by the Jacobi–Abel addition law …a construction due to Abel; see Whittaker and Watson (1927, pp. 442, 496–497). …
4: 1.2 Elementary Algebra
§1.2(iv) Means
The arithmetic mean of n numbers a 1 , a 2 , , a n is … The geometric mean G and harmonic mean H of n positive numbers a 1 , a 2 , , a n are given by … If r is a nonzero real number, then the weighted mean M ( r ) of n nonnegative numbers a 1 , a 2 , , a n , and n positive numbers p 1 , p 2 , , p n with …
M ( 1 ) = A ,
5: 2.10 Sums and Sequences
Another version is the Abel–Plana formula: …
  • (c)

    The first infinite integral in (2.10.2) converges.

  • These problems can be brought within the scope of §2.4 by means of Cauchy’s integral formula …
    6: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • H. F. Baker (1995) Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge University Press, Cambridge.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • A. I. Bobenko (1991) Constant mean curvature surfaces and integrable equations. Uspekhi Mat. Nauk 46 (4(280)), pp. 3–42, 192 (Russian).
  • 7: 20 Theta Functions
    Chapter 20 Theta Functions
    8: 1.7 Inequalities
    §1.7(iii) Means
    1.7.7 H G A ,
    1.7.8 min ( a 1 , a 2 , , a n ) M ( r ) max ( a 1 , a 2 , , a n ) ,
    1.7.9 M ( r ) M ( s ) , r < s ,
    9: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • G. Allasia and R. Besenghi (1989) Numerical Calculation of the Riemann Zeta Function and Generalizations by Means of the Trapezoidal Rule. In Numerical and Applied Mathematics, Part II (Paris, 1988), C. Brezinski (Ed.), IMACS Ann. Comput. Appl. Math., Vol. 1, pp. 467–472.
  • G. Almkvist and B. Berndt (1988) Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π , and the Ladies Diary. Amer. Math. Monthly 95 (7), pp. 585–608.
  • H. Alzer (1997a) A harmonic mean inequality for the gamma function. J. Comput. Appl. Math. 87 (2), pp. 195–198.
  • 10: Bibliography G
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • W. Gautschi (1974) A harmonic mean inequality for the gamma function. SIAM J. Math. Anal. 5 (2), pp. 278–281.
  • W. Gautschi (1992) On mean convergence of extended Lagrange interpolation. J. Comput. Appl. Math. 43 (1-2), pp. 19–35.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.