About the Project

2人斗地主游戏大厅,网上2人斗地主游戏规则,【复制打开网址:33kk55.com】正规博彩平台,在线赌博平台,2人斗地主游戏玩法介绍,真人2人斗地主游戏规则,网上真人棋牌游戏平台,真人博彩游戏平台网址LHBxBZZZAHHQcx0Q

AdvancedHelp

(0.012 seconds)

11—20 of 804 matching pages

11: 32.9 Other Elementary Solutions
where P n 2 + 1 ( ζ ) and Q n 2 ( ζ ) are polynomials of degrees n 2 + 1 and n 2 , respectively, with no common zeros. … These are rational solutions in ζ = z 1 / 2 of the form …where P n 2 n + 1 ( ζ ) and Q n 2 n ( ζ ) are polynomials of degrees n 2 n + 1 and n 2 n , respectively, with no common zeros. … P V , with α = β = 0 and γ 2 + 2 δ = 0 , has solutions w ( z ) = C exp ( ± 2 δ z ) , with C an arbitrary constant. … Dubrovin and Mazzocco (2000) classifies all algebraic solutions for the special case of P VI  with β = γ = 0 , δ = 1 2 . …
12: 22.6 Elementary Identities
22.6.4 k 2 k 2 sd 2 ( z , k ) = k 2 ( cd 2 ( z , k ) 1 ) = k 2 ( 1 nd 2 ( z , k ) ) .
22.6.7 dn ( 2 z , k ) = dn 2 ( z , k ) k 2 sn 2 ( z , k ) cn 2 ( z , k ) 1 k 2 sn 4 ( z , k ) = dn 4 ( z , k ) + k 2 k 2 sn 4 ( z , k ) 1 k 2 sn 4 ( z , k ) .
22.6.8 cd ( 2 z , k ) = cd 2 ( z , k ) k 2 sd 2 ( z , k ) nd 2 ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
22.6.10 nd ( 2 z , k ) = nd 2 ( z , k ) + k 2 sd 2 ( z , k ) cd 2 ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
22.6.20 cn 2 ( 1 2 z , k ) = k 2 + dn ( z , k ) + k 2 cn ( z , k ) k 2 ( 1 + cn ( z , k ) ) = k 2 ( 1 dn ( z , k ) ) k 2 ( dn ( z , k ) cn ( z , k ) ) = k 2 ( 1 + cn ( z , k ) ) k 2 + dn ( z , k ) k 2 cn ( z , k ) ,
13: Staff
  • Frank W. J. Olver, University of Maryland and NIST, Chaps. 1, 2, 4, 9, 10

  • Ian J. Thompson, Lawrence Livermore National Laboratory, Chap. 33

  • Roderick S. C. Wong, City University of Hong Kong, Chaps. 1, 2, 18

  • Ian J. Thompson, Lawrence Livermore National Laboratory, for Chap. 33

  • Roderick S. C. Wong, City University of Hong Kong, for Chaps. 2, 18

  • 14: 18.39 Applications in the Physical Sciences
    The spectrum is mixed, as in §1.18(viii), the positive energy, non- L 2 , scattering states are the subject of Chapter 33. … Namely for fixed l the infinite set labeled by p describe only the L 2 bound states for that single l , omitting the continuum briefly mentioned below, and which is the subject of Chapter 33, and so an unusual example of the mixed spectra of §1.18(viii). … This is also the normalization and notation of Chapter 33 for Z = 1 , and the notation of Weinberg (2013, Chapter 2). … The positive energy (scattering) eigenfunctions for the above Coulomb problem, with potential V ( r ) = Z e 2 / r are discussed in Chapter 33 for each integer l . … The bound state L 2 eigenfunctions of the radial Coulomb Schrödinger operator are discussed in §§18.39(i) and 18.39(ii), and the δ -function normalized (non- L 2 ) in Chapter 33, where the solutions appear as Whittaker functions. …
    15: 10.67 Asymptotic Expansions for Large Argument
    10.67.9 ber 2 x + bei 2 x e x 2 2 π x ( 1 + 1 4 2 1 x + 1 64 1 x 2 33 256 2 1 x 3 1797 8192 1 x 4 + ) ,
    10.67.10 ber x bei x ber x bei x e x 2 2 π x ( 1 2 + 1 8 1 x + 9 64 2 1 x 2 + 39 512 1 x 3 + 75 8192 2 1 x 4 + ) ,
    10.67.12 ( ber x ) 2 + ( bei x ) 2 e x 2 2 π x ( 1 3 4 2 1 x + 9 64 1 x 2 + 75 256 2 1 x 3 + 2475 8192 1 x 4 + ) .
    10.67.13 ker 2 x + kei 2 x π 2 x e x 2 ( 1 1 4 2 1 x + 1 64 1 x 2 + 33 256 2 1 x 3 1797 8192 1 x 4 + ) ,
    10.67.16 ( ker x ) 2 + ( kei x ) 2 π 2 x e x 2 ( 1 + 3 4 2 1 x + 9 64 1 x 2 75 256 2 1 x 3 + 2475 8192 1 x 4 + ) .
    16: 4.17 Special Values and Limits
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
    θ sin θ cos θ tan θ csc θ sec θ cot θ
    π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) 2 3 2 ( 3 + 1 ) 2 ( 3 1 ) 2 + 3
    π / 4 1 2 2 1 2 2 1 2 2 1
    2 π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
    3 π / 4 1 2 2 1 2 2 1 2 2 1
    4.17.3 lim z 0 1 cos z z 2 = 1 2 .
    17: 34.5 Basic Properties: 6 j Symbol
    If any lower argument in a 6 j symbol is 0 , 1 2 , or 1 , then the 6 j symbol has a simple algebraic form. …
    34.5.5 { j 1 j 2 j 3 1 j 3 1 j 2 } = ( 1 ) J ( 2 ( J + 1 ) ( J 2 j 1 ) ( J 2 j 2 ) ( J 2 j 3 + 1 ) 2 j 2 ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.6 { j 1 j 2 j 3 1 j 3 1 j 2 + 1 } = ( 1 ) J ( ( J 2 j 2 1 ) ( J 2 j 2 ) ( J 2 j 3 + 1 ) ( J 2 j 3 + 2 ) ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) ( 2 j 2 + 3 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.7 { j 1 j 2 j 3 1 j 3 j 2 } = ( 1 ) J + 1 2 ( j 2 ( j 2 + 1 ) + j 3 ( j 3 + 1 ) j 1 ( j 1 + 1 ) ) ( 2 j 2 ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) 2 j 3 ( 2 j 3 + 1 ) ( 2 j 3 + 2 ) ) 1 2 .
    34.5.13 E ( j ) = ( ( j 2 ( j 2 j 3 ) 2 ) ( ( j 2 + j 3 + 1 ) 2 j 2 ) ( j 2 ( l 2 l 3 ) 2 ) ( ( l 2 + l 3 + 1 ) 2 j 2 ) ) 1 2 .
    18: 28.26 Asymptotic Approximations for Large q
    28.26.1 Mc m ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fc m ( z , h ) i Gc m ( z , h ) ) ,
    28.26.3 ϕ = 2 h sinh z ( m + 1 2 ) arctan ( sinh z ) .
    Then as h + with fixed z in z > 0 and fixed s = 2 m + 1 ,
    28.26.4 Fc m ( z , h ) 1 + s 8 h cosh 2 z + 1 2 11 h 2 ( s 4 + 86 s 2 + 105 cosh 4 z s 4 + 22 s 2 + 57 cosh 2 z ) + 1 2 14 h 3 ( s 5 + 14 s 3 + 33 s cosh 2 z 2 s 5 + 124 s 3 + 1122 s cosh 4 z + 3 s 5 + 290 s 3 + 1627 s cosh 6 z ) + ,
    28.26.5 Gc m ( z , h ) sinh z cosh 2 z ( s 2 + 3 2 5 h + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cosh 2 z ) + 1 2 14 h 3 ( 5 s 4 + 34 s 2 + 9 s 6 47 s 4 + 667 s 2 + 2835 12 cosh 2 z + s 6 + 505 s 4 + 12139 s 2 + 10395 12 cosh 4 z ) ) + .
    19: 24.2 Definitions and Generating Functions
    B 2 n + 1 = 0 ,
    ( 1 ) n + 1 B 2 n > 0 , n = 1 , 2 , .
    E 2 n + 1 = 0 ,
    ( 1 ) n E 2 n > 0 .
    24.2.9 E n = 2 n E n ( 1 2 ) = integer ,
    20: 23.21 Physical Applications
    In §22.19(ii) it is noted that Jacobian elliptic functions provide a natural basis of solutions for problems in Newtonian classical dynamics with quartic potentials in canonical form ( 1 x 2 ) ( 1 k 2 x 2 ) . The Weierstrass function plays a similar role for cubic potentials in canonical form g 3 + g 2 x 4 x 3 . … where x , y , z are the corresponding Cartesian coordinates and e 1 , e 2 , e 3 are constants. The Laplacian operator 2 1.5(ii)) is given by … Another form is obtained by identifying e 1 , e 2 , e 3 as lattice roots (§23.3(i)), and setting …