About the Project

/shop/%E2%99%9F%F0%9F%AA%90%F0%9F%A6%B8%20Buy%20DNP%20Online%20$0.99%20Per%20Capsule%3A%20%F0%9F%92%A3%20www.BuyDNPOnline.cc%20%F0%9F%92%A3%20Buy%20DNP%20UK%20%F0%9F%A6%B8%F0%9F%AA%90%E2%99%9F%20Buy%20DNP%20In%20Australia%20-%20Buy%20DNP-www.BuyDNPOnline.cc

AdvancedHelp

Did you mean /shop/%E2%99%9F%F0%9F%AA%90%F0%9F%A6%B8%20Buy%20DNP%20Online%20$0.99%20Per%20Capsule%3A%20%F0%9F%92%A3%20www.BuyDNPOnline.cc%20%F0%9F%92%A3%20Buy%20DNP%20UK%20%F0%9F%A6%B8%F0%9F%AA%90%E2%99%9F%20Buy%20DNP%20In%20Australia%20-%20Buy%20DNP-www.feshbachpublishing.com ?

(0.038 seconds)

1—10 of 983 matching pages

1: 34.6 Definition: 9 ⁒ j Symbol
§34.6 Definition: 9 ⁒ j Symbol
β–ΊThe 9 ⁒ j symbol may be defined either in terms of 3 ⁒ j symbols or equivalently in terms of 6 ⁒ j symbols: β–Ί
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  ⁒ m r ⁒ s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ⁒ ( j 21 j 22 j 23 m 21 m 22 m 23 ) ⁒ ( j 31 j 32 j 33 m 31 m 32 m 33 ) ⁒ ( j 11 j 21 j 31 m 11 m 21 m 31 ) ⁒ ( j 12 j 22 j 32 m 12 m 22 m 32 ) ⁒ ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
β–Ί
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 ⁒ j ⁒ ( 2 ⁒ j + 1 ) ⁒ { j 11 j 21 j 31 j 32 j 33 j } ⁒ { j 12 j 22 j 32 j 21 j j 23 } ⁒ { j 13 j 23 j 33 j j 11 j 12 } .
β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: 34.13 Methods of Computation
§34.13 Methods of Computation
β–ΊMethods of computation for 3 ⁒ j and 6 ⁒ j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 97–99); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). β–ΊFor 9 ⁒ j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). A review of methods of computation is given in Srinivasa Rao and Rajeswari (1993, Chapter VII, pp. 235–265). …
3: 16.7 Relations to Other Functions
β–ΊFor 3 ⁒ j , 6 ⁒ j , 9 ⁒ j symbols see Chapter 34. Further representations of special functions in terms of F q p functions are given in Luke (1969a, §§6.2–6.3), and an extensive list of F q q + 1 functions with rational numbers as parameters is given in Krupnikov and Kölbig (1997).
4: 15.3 Graphics
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 15.3.1: F ⁑ ( 4 3 , 9 16 ; 14 5 ; x ) , 100 x 1 . Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 15.3.2: F ⁑ ( 5 , 10 ; 1 ; x ) , 0.023 x 1 . Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 15.3.3: F ⁑ ( 1 , 10 ; 10 ; x ) , 3 x 1 . Magnify
β–ΊIn Figures 15.3.5 and 15.3.6, height corresponds to the absolute value of the function and color to the phase. … β–Ί
β–Ί
See accompanying text
β–Ί
Figure 15.3.5: F ⁑ ( 4 3 , 9 16 ; 14 5 ; x + i ⁒ y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help
5: 19.9 Inequalities
β–ΊThroughout this subsection 0 < k < 1 , except in (19.9.4). … β–ΊEven for the extremely eccentric ellipse with a = 99 and b = 1 , this is correct within 0. … β–ΊSharper inequalities for F ⁑ ( Ο• , k ) are: … β–ΊInequalities for both F ⁑ ( Ο• , k ) and E ⁑ ( Ο• , k ) involving inverse circular or inverse hyperbolic functions are given in Carlson (1961b, §4). … β–ΊOther inequalities for F ⁑ ( Ο• , k ) can be obtained from inequalities for R F ⁑ ( x , y , z ) given in Carlson (1966, (2.15)) and Carlson (1970) via (19.25.5).
6: 16.24 Physical Applications
β–ΊGeneralized hypergeometric functions and Appell functions appear in the evaluation of the so-called Watson integrals which characterize the simplest possible lattice walks. … β–Ί
§16.24(iii) 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j Symbols
β–ΊThey can be expressed as F 2 3 functions with unit argument. …These are balanced F 3 4 functions with unit argument. Lastly, special cases of the 9 ⁒ j symbols are F 4 5 functions with unit argument. …
7: Bibliography T
β–Ί
  • Y. Takei (1995) On the connection formula for the first Painlevé equation—from the viewpoint of the exact WKB analysis. SΕ«rikaisekikenkyΕ«sho KōkyΕ«roku (931), pp. 70–99.
  • β–Ί
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • β–Ί
  • I. Thompson (2013) Algorithm 926: incomplete gamma functions with negative arguments. ACM Trans. Math. Software 39 (2), pp. Art. 14, 9.
  • β–Ί
  • W. J. Thompson (1994) Angular Momentum: An Illustrated Guide to Rotational Symmetries for Physical Systems. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.
  • β–Ί
  • A. A. TuαΊ‘ilin (1971) Theory of the Fresnel integral. USSR Comput. Math. and Math. Phys. 9 (4), pp. 271–279.
  • 8: 34.12 Physical Applications
    §34.12 Physical Applications
    β–ΊThe angular momentum coupling coefficients ( 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols) are essential in the fields of nuclear, atomic, and molecular physics. For applications in nuclear structure, see de-Shalit and Talmi (1963); in atomic spectroscopy, see Biedenharn and van Dam (1965, pp. 134–200), Judd (1998), Sobelman (1992, Chapter 4), Shore and Menzel (1968, pp. 268–303), and Wigner (1959); in molecular spectroscopy and chemical reactions, see Burshtein and Temkin (1994, Chapter 5), and Judd (1975). 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols are also found in multipole expansions of solutions of the Laplace and Helmholtz equations; see Carlson and Rushbrooke (1950) and Judd (1976).
    9: Publications
    β–Ί
  • D. W. Lozier, B. R. Miller and B. V. Saunders (1999) Design of a Digital Mathematical Library for Science, Technology and Education, Proceedings of the IEEE Forum on Research and Technology Advances in Digital Libraries (IEEE ADL ’99, Baltimore, Maryland, May 19, 1999). PDF
  • β–Ί
  • B. V. Saunders and Q. Wang (1999) Using Numerical Grid Generation to Facilitate 3D Visualization of Complicated Mathematical Functions, Technical Report NISTIR 6413 (November 1999), National Institute of Standards and Technology. PDF
  • β–Ί
  • D. W. Lozier (2000) The DLMF Project: A New Initiative in Classical Special Functions, in Special Functions—Proceedings of the International Workshop, Hong Kong, June 21-25, 1999 (C. Dunkl, M. Ismail, R. Wong, eds.), World Scientific, pp. 207–220. PDF
  • β–Ί
  • B. R. Miller and A. Youssef (2003) Technical Aspects of the Digital Library of Mathematical Functions, Annals of Mathematics and Artificial Intelligence—Special Issue on Mathematical Knowledge Management, Vol. 38, Nos. 1–3, pp. 121–136. PDF
  • β–Ί
  • B. I. Schneider, B. R. Miller and B. V. Saunders (2018) NIST’s Digital Library of Mathematial Functions, Physics Today 71, 2, 48 (2018), pp. 48–53. PDF
  • 10: Bibliography
    β–Ί
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 91–99.
  • β–Ί
  • G. E. Andrews (1974) Applications of basic hypergeometric functions. SIAM Rev. 16 (4), pp. 441–484.
  • β–Ί
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • β–Ί
  • H. Appel (1968) Numerical Tables for Angular Correlation Computations in Ξ± -, Ξ² - and Ξ³ -Spectroscopy: 3 ⁒ j -, 6 ⁒ j -, 9 ⁒ j -Symbols, F- and Ξ“ -Coefficients. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag.
  • β–Ί
  • F. M. Arscott (1959) A new treatment of the ellipsoidal wave equation. Proc. London Math. Soc. (3) 9, pp. 21–50.