About the Project

.bob体育世界杯开幕式『世界杯佣金分红55%,咨询专员:@ky975』.n15.k2q1w9-2022年11月29日5时24分51秒h3drpznfr

AdvancedHelp

(0.004 seconds)

11—20 of 157 matching pages

11: Bibliography N
  • G. Nemes (2020) An extension of Laplace’s method. Constr. Approx. 51 (2), pp. 247–272.
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
  • 12: Bibliography C
  • L. Carlitz (1960) Note on Nörlund’s polynomial B n ( z ) . Proc. Amer. Math. Soc. 11 (3), pp. 452–455.
  • M. A. Chaudhry and S. M. Zubair (1994) Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 55 (1), pp. 99–124.
  • P. A. Clarkson (2003b) The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44 (11), pp. 5350–5374.
  • J. N. L. Connor (1976) Catastrophes and molecular collisions. Molecular Phys. 31 (1), pp. 33–55.
  • A. Csótó and G. M. Hale (1997) S -matrix and R -matrix determination of the low-energy He 5 and Li 5 resonance parameters. Phys. Rev. C 55 (1), pp. 536–539.
  • 13: Bibliography K
  • A. Kalähne (1907) Über die Wurzeln einiger Zylinderfunktionen und gewisser aus ihnen gebildeter Gleichungen. Zeitschrift für Mathematik und Physik 54, pp. 55–86 (German).
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • E. L. Kaplan (1948) Auxiliary table for the incomplete elliptic integrals. J. Math. Physics 27, pp. 11–36.
  • R. P. Kerr (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11 (5), pp. 237–238.
  • K. S. Kölbig (1968) Algorithm 327: Dilogarithm [S22]. Comm. ACM 11 (4), pp. 270–271.
  • 14: Bibliography G
  • B. Gambier (1910) Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est a points critiques fixes. Acta Math. 33 (1), pp. 1–55.
  • W. Gautschi (1966) Algorithm 292: Regular Coulomb wave functions. Comm. ACM 9 (11), pp. 793–795.
  • W. Gautschi (1969) Algorithm 363: Complex error function. Comm. ACM 12 (11), pp. 635.
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • V. I. Gromak (1975) Theory of Painlevé’s equations. Differ. Uravn. 11 (11), pp. 373–376 (Russian).
  • 15: 3.9 Acceleration of Convergence
    Table 3.9.1: Shanks’ transformation for s n = j = 1 n ( 1 ) j + 1 j 2 .
    n t n , 2 t n , 4 t n , 6 t n , 8 t n , 10
    2 0.82111 11111 11 0.82243 44785 14 0.82246 61821 45 0.82246 70102 48 0.82246 70327 79
    For examples and other transformations for convergent sequences and series, see Wimp (1981, pp. 156–199), Brezinski and Redivo Zaglia (1991, pp. 55–72), and Sidi (2003, Chapters 6, 12–13, 15–16, 19–24, and pp. 483–492). …
    16: 10.60 Sums
    For further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000). … See also Watson (1944, Chapters 11 and 16).
    17: Bibliography L
  • A. Leitner and J. Meixner (1960) Eine Verallgemeinerung der Sphäroidfunktionen. Arch. Math. 11, pp. 29–39.
  • L. Lorch and P. Szegő (1963) Higher monotonicity properties of certain Sturm-Liouville functions.. Acta Math. 109, pp. 55–73.
  • H. Lotsch and M. Gray (1964) Algorithm 244: Fresnel integrals. Comm. ACM 7 (11), pp. 660–661.
  • N. A. Lukaševič (1967b) On the theory of Painlevé’s third equation. Differ. Uravn. 3 (11), pp. 1913–1923 (Russian).
  • Y. L. Luke (1977a) Algorithms for rational approximations for a confluent hypergeometric function. Utilitas Math. 11, pp. 123–151.
  • 18: Bibliography V
  • A. L. Van Buren, R. V. Baier, S. Hanish, and B. J. King (1972) Calculation of spheroidal wave functions. J. Acoust. Soc. Amer. 51, pp. 414–416.
  • H. von Koch (1901) Über die Riemann’sche Primzahlfunction. Math. Ann. 55, pp. 441–464 (German).
  • 19: 4.14 Definitions and Periodicity
    4.14.3 cos z ± i sin z = e ± i z ,
    20: Bibliography P
  • J. B. Parkinson (1969) Optical properties of layer antiferromagnets with K 2 NiF 4 structure. J. Phys. C: Solid State Physics 2 (11), pp. 2012–2021.
  • B. Pichon (1989) Numerical calculation of the generalized Fermi-Dirac integrals. Comput. Phys. Comm. 55 (2), pp. 127–136.
  • R. Piessens and M. Branders (1984) Algorithm 28. Algorithm for the computation of Bessel function integrals. J. Comput. Appl. Math. 11 (1), pp. 119–137.