About the Project

.bob体育世界杯开幕式『世界杯佣金分红55%,咨询专员:@ky975』.n15.k2q1w9-2022年11月29日5时24分51秒h3drpznfr

AdvancedHelp

Did you mean .boa体育世界杯开幕式『世界杯佣金分红55%,咨询专员:@1975』.15.2.1-2022年11月29日5时24分51秒h3drpznfr ?

(0.003 seconds)

1—10 of 153 matching pages

1: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • 2: Mathematical Introduction
    The NIST Handbook has essentially the same objective as the Handbook of Mathematical Functions that was issued in 1964 by the National Bureau of Standards as Number 55 in the NBS Applied Mathematics Series (AMS). … As a consequence, in addition to providing more information about the special functions that were covered in AMS 55, the NIST Handbook includes several special functions that have appeared in the interim in applied mathematics, the physical sciences, and engineering, as well as in other areas. See, for example, Chapters 16, 17, 18, 19, 21, 27, 29, 31, 32, 34, 35, and 36. Two other ways in which this Handbook differs from AMS 55, and other handbooks, are as follows. … For equations or other technical information that appeared previously in AMS 55, the DLMF usually includes the corresponding AMS 55 equation number, or other form of reference, together with corrections, if needed. …
    3: 6.14 Integrals
    For collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).
    4: Bibliography H
  • J. R. Herndon (1961a) Algorithm 55: Complete elliptic integral of the first kind. Comm. ACM 4 (4), pp. 180.
  • D. R. Herrick and S. O’Connor (1998) Inverse virial symmetry of diatomic potential curves. J. Chem. Phys. 109 (1), pp. 11–19.
  • H. W. Hethcote (1970) Error bounds for asymptotic approximations of zeros of Hankel functions occurring in diffraction problems. J. Mathematical Phys. 11 (8), pp. 2501–2504.
  • G. W. Hill (1970) Algorithm 395: Student’s t-distribution. Comm. ACM 13 (10), pp. 617–619.
  • C. Hunter (1981) Two Parametric Eigenvalue Problems of Differential Equations. In Spectral Theory of Differential Operators (Birmingham, AL, 1981), North-Holland Math. Stud., Vol. 55, pp. 233–241.
  • 5: 28.6 Expansions for Small q
    28.6.2 a 1 ( q ) = 1 + q 1 8 q 2 1 64 q 3 1 1536 q 4 + 11 36864 q 5 + 49 5 89824 q 6 + 55 94 37184 q 7 83 353 89440 q 8 + ,
    28.6.3 b 1 ( q ) = 1 q 1 8 q 2 + 1 64 q 3 1 1536 q 4 11 36864 q 5 + 49 5 89824 q 6 55 94 37184 q 7 83 353 89440 q 8 + ,
    28.6.10 a 5 ( q ) = 25 + 1 48 q 2 + 11 7 74144 q 4 + 1 1 47456 q 5 + 37 8918 13888 q 6 + ,
    28.6.11 b 5 ( q ) = 25 + 1 48 q 2 + 11 7 74144 q 4 1 1 47456 q 5 + 37 8918 13888 q 6 + ,
    28.6.21 2 1 / 2 ce 0 ( z , q ) = 1 1 2 q cos 2 z + 1 32 q 2 ( cos 4 z 2 ) 1 128 q 3 ( 1 9 cos 6 z 11 cos 2 z ) + ,
    6: Bibliography E
  • C. Eckart (1930) The penetration of a potential barrier by electrons. Phys. Rev. 35 (11), pp. 1303–1309.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1953b) Higher Transcendental Functions. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • F. H. L. Essler, H. Frahm, A. R. Its, and V. E. Korepin (1996) Painlevé transcendent describes quantum correlation function of the X X Z antiferromagnet away from the free-fermion point. J. Phys. A 29 (17), pp. 5619–5626.
  • L. Euler (1768) Institutiones Calculi Integralis. Opera Omnia (1), Vol. 11, pp. 110–113.
  • G. A. Evans and J. R. Webster (1999) A comparison of some methods for the evaluation of highly oscillatory integrals. J. Comput. Appl. Math. 112 (1-2), pp. 55–69.
  • 7: William P. Reinhardt
    Older work on the scattering theory of the atomic Coulomb problem led to the discovery of new classes of orthogonal polynomials relating to the spectral theory of Schrödinger operators, and new uses of old ones: this work was strongly motivated by his original ownership of a 1964 hard copy printing of the original AMS 55 NBS Handbook of Mathematical Functions. …
    8: Bibliography
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • G. Allasia and R. Besenghi (1991) Numerical evaluation of the Kummer function with complex argument by the trapezoidal rule. Rend. Sem. Mat. Univ. Politec. Torino 49 (3), pp. 315–327.
  • V. I. Arnol’d (1974) Normal forms of functions in the neighborhood of degenerate critical points. Uspehi Mat. Nauk 29 (2(176)), pp. 11–49 (Russian).
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • 9: 24.2 Definitions and Generating Functions
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    11 0 5 6 0 11 2 0 11 0 11 0 55 6 11 2 1
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    11 691 4 0 1705 2 0 2805 4 0 231 0 165 4 0 11 2 1
    12 0 2073 0 3410 0 1683 0 396 0 55 0 6 1
    10: Bibliography F
  • M. V. Fedoryuk (1991) Asymptotics of the spectrum of the Heun equation and of Heun functions. Izv. Akad. Nauk SSSR Ser. Mat. 55 (3), pp. 631–646 (Russian).
  • N. Fleury and A. Turbiner (1994) Polynomial relations in the Heisenberg algebra. J. Math. Phys. 35 (11), pp. 6144–6149.
  • A. S. Fokas and M. J. Ablowitz (1982) On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23 (11), pp. 2033–2042.
  • P. J. Forrester and N. S. Witte (2002) Application of the τ -function theory of Painlevé equations to random matrices: P V , P III , the LUE, JUE, and CUE. Comm. Pure Appl. Math. 55 (6), pp. 679–727.
  • L. W. Fullerton (1972) Algorithm 435: Modified incomplete gamma function. Comm. ACM 15 (11), pp. 993–995.