About the Project

.2022%E5%B9%B4%E8%B6%B3%E7%90%83%E4%B8%96%E7%95%8C%E6%9D%AF%E5%86%A0%E5%86%9B_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E8%B6%B3%E7%90%83%E6%AF%94%E8%B5%9B%E8%B5%8C%E7%94%A8%E4%BB%80%E4%B9%88app_b5p6v3_2022%E5%B9%B412%E6%9C%882%E6%97%A56%E6%97%B627%E5%88%8638%E7%A7%92_3xvvl7r9d.cc

AdvancedHelp

Did you mean .2022%E5%B9%B4%E8%B6%B3%E7%90%83%E4%B8%96%E7%95%8C%E6%9D%AF%E5%86%A0%E5%86%9B_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E8%B6%B3%E7%90%83%E6%AF%94%E8%B5%9B%E8%B5%8C%E7%94%A8%E4%BB%80%E4%B9%88app_b5p6v3_2022%E5%B9%412%E6%9C%882%E6%97%256%E6%97%627%E5%88%86384%E7%A7%92_3xvvl7r9d.cc ?

(0.048 seconds)

1—10 of 743 matching pages

1: 9.2 Differential Equation
9.2.2 w = Ai ( z ) , Bi ( z ) , Ai ( z e 2 π i / 3 ) .
9.2.3 Ai ( 0 ) = 1 3 2 / 3 Γ ( 2 3 ) = 0.35502 80538 ,
9.2.4 Ai ( 0 ) = 1 3 1 / 3 Γ ( 1 3 ) = 0.25881 94037 ,
9.2.5 Bi ( 0 ) = 1 3 1 / 6 Γ ( 2 3 ) = 0.61492 66274 ,
9.2.6 Bi ( 0 ) = 3 1 / 6 Γ ( 1 3 ) = 0.44828 83573 .
2: 19.37 Tables
Tabulated for ϕ = 0 ( 5 ) 90 , k 2 = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). Tabulated for ϕ = 0 ( 1 ) 90 , k 2 = 0 ( .01 ) 1 to 7S by Beli͡akov et al. (1962). … Tabulated for ϕ = 0 ( 5 ) 90 , k = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). Tabulated for ϕ = 0 ( 5 ) 90 , arcsin k = 0 ( 1 ) 90 to 6D by Byrd and Friedman (1971), for ϕ = 0 ( 5 ) 90 , arcsin k = 0 ( 2 ) 90 and 5 ( 10 ) 85 to 8D by Abramowitz and Stegun (1964, Chapter 17), and for ϕ = 0 ( 10 ) 90 , arcsin k = 0 ( 5 ) 90 to 9D by Zhang and Jin (1996, pp. 674–675). … Tabulated (with different notation) for ϕ = 0 ( 15 ) 90 , α 2 = 0 ( .1 ) 1 , arcsin k = 0 ( 15 ) 90 to 5D by Abramowitz and Stegun (1964, Chapter 17), and for ϕ = 0 ( 15 ) 90 , α 2 = 0 ( .1 ) 1 , arcsin k = 0 ( 15 ) 90 to 7D by Zhang and Jin (1996, pp. 676–677). …
3: 20.15 Tables
This reference gives θ j ( x , q ) , j = 1 , 2 , 3 , 4 , and their logarithmic x -derivatives to 4D for x / π = 0 ( .1 ) 1 , α = 0 ( 9 ) 90 , where α is the modular angle given by
20.15.1 sin α = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) = k .
Spenceley and Spenceley (1947) tabulates θ 1 ( x , q ) / θ 2 ( 0 , q ) , θ 2 ( x , q ) / θ 2 ( 0 , q ) , θ 3 ( x , q ) / θ 4 ( 0 , q ) , θ 4 ( x , q ) / θ 4 ( 0 , q ) to 12D for u = 0 ( 1 ) 90 , α = 0 ( 1 ) 89 , where u = 2 x / ( π θ 3 2 ( 0 , q ) ) and α is defined by (20.15.1), together with the corresponding values of θ 2 ( 0 , q ) and θ 4 ( 0 , q ) . Lawden (1989, pp. 270–279) tabulates θ j ( x , q ) , j = 1 , 2 , 3 , 4 , to 5D for x = 0 ( 1 ) 90 , q = 0.1 ( .1 ) 0.9 , and also q to 5D for k 2 = 0 ( .01 ) 1 . Tables of Neville’s theta functions θ s ( x , q ) , θ c ( x , q ) , θ d ( x , q ) , θ n ( x , q ) (see §20.1) and their logarithmic x -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for ε , α = 0 ( 5 ) 90 , where (in radian measure) ε = x / θ 3 2 ( 0 , q ) = π x / ( 2 K ( k ) ) , and α is defined by (20.15.1). …
4: 5.16 Sums
5.16.1 k = 1 ( 1 ) k ψ ( k ) = π 2 8 ,
5.16.2 k = 1 1 k ψ ( k + 1 ) = ζ ( 3 ) = 1 2 ψ ′′ ( 1 ) .
For sums of gamma functions see Andrews et al. (1999, Chapters 2 and 3) and §§15.2(i), 16.2. For related sums involving finite field analogs of the gamma and beta functions (Gauss and Jacobi sums) see Andrews et al. (1999, Chapter 1) and Terras (1999, pp. 90, 149).
5: 14.33 Tables
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 5–8D; 𝖯 n ( x ) for n = 1 ( 1 ) 4 , 9 , 10 , x = 0 ( .01 ) 1 , 5–7D; 𝖰 n ( x ) and 𝖰 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 6–8D; P n ( x ) and P n ( x ) for n = 0 ( 1 ) 5 , 9 , 10 , x = 1 ( .2 ) 10 , 6S; Q n ( x ) and Q n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 1 ( .2 ) 10 , 6S. (Here primes denote derivatives with respect to x .)

  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Belousov (1962) tabulates 𝖯 n m ( cos θ ) (normalized) for m = 0 ( 1 ) 36 , n m = 0 ( 1 ) 56 , θ = 0 ( 2.5 ) 90 , 6D.

  • 6: 33.26 Software
  • Noble (2004). Fortran 90.

  • 7: Bibliography E
  • Á. Elbert (2001) Some recent results on the zeros of Bessel functions and orthogonal polynomials. J. Comput. Appl. Math. 133 (1-2), pp. 65–83.
  • A. Erdélyi (1942b) The Fuchsian equation of second order with four singularities. Duke Math. J. 9 (1), pp. 48–58.
  • D. Erricolo and G. Carluccio (2013) Algorithm 934: Fortran 90 subroutines to compute Mathieu functions for complex values of the parameter. ACM Trans. Math. Softw. 40 (1), pp. 8:1–8:19.
  • D. Erricolo (2006) Algorithm 861: Fortran 90 subroutines for computing the expansion coefficients of Mathieu functions using Blanch’s algorithm. ACM Trans. Math. Software 32 (4), pp. 622–634.
  • T. Estermann (1959) On the representations of a number as a sum of three squares. Proc. London Math. Soc. (3) 9, pp. 575–594.
  • 8: 27.2 Functions
    27.2.9 d ( n ) = d | n 1
    It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that σ 0 ( n ) = d ( n ) . … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    1 1 1 1 14 6 4 24 27 18 4 40 40 16 8 90
    9: 27.20 Methods of Computation: Other Number-Theoretic Functions
    See Calkin et al. (2007), and Lehmer (1941, pp. 5–83). …
    10: 4.48 Software
  • Kearfott (1996). Fortran 90.