About the Project

.2014年世界杯朝鲜战绩『网址:mxsty.cc』.世界杯1998假球-m6q3s2-2022年11月30日9时27分4秒

AdvancedHelp

Did you mean .2014年世界杯朝鲜战绩『网址:style』.世界杯1998假球-m6q3s2-2022年11月30日9时27分4秒 ?

(0.005 seconds)

1—10 of 533 matching pages

1: 13.30 Tables
  • Žurina and Osipova (1964) tabulates M ( a , b , x ) and U ( a , b , x ) for b = 2 , a = 0.98 ( .02 ) 1.10 , x = 0 ( .01 ) 4 , 7D or 7S.

  • Slater (1960) tabulates M ( a , b , x ) for a = 1 ( .1 ) 1 , b = 0.1 ( .1 ) 1 , and x = 0.1 ( .1 ) 10 , 7–9S; M ( a , b , 1 ) for a = 11 ( .2 ) 2 and b = 4 ( .2 ) 1 , 7D; the smallest positive x -zero of M ( a , b , x ) for a = 4 ( .1 ) 0.1 and b = 0.1 ( .1 ) 2.5 , 7D.

  • Zhang and Jin (1996, pp. 411–423) tabulates M ( a , b , x ) and U ( a , b , x ) for a = 5 ( .5 ) 5 , b = 0.5 ( .5 ) 5 , and x = 0.1 , 1 , 5 , 10 , 20 , 30 , 8S (for M ( a , b , x ) ) and 7S (for U ( a , b , x ) ).

  • 2: 24.2 Definitions and Generating Functions
    Table 24.2.1: Bernoulli and Euler numbers.
    n B n E n
    4 1 30 5
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    4 1 30 3.33333 3333 ×10⁻²
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    11 691 4 0 1705 2 0 2805 4 0 231 0 165 4 0 11 2 1
    3: 26.2 Basic Definitions
    If, for example, a permutation of the integers 1 through 6 is denoted by 256413 , then the cycles are ( 1 , 2 , 5 ) , ( 3 , 6 ) , and ( 4 ) . …The function σ also interchanges 3 and 6, and sends 4 to itself. … As an example, { 1 , 3 , 4 } , { 2 , 6 } , { 5 } is a partition of { 1 , 2 , 3 , 4 , 5 , 6 } . … As an example, { 1 , 1 , 1 , 2 , 4 , 4 } is a partition of 13. … The example { 1 , 1 , 1 , 2 , 4 , 4 } has six parts, three of which equal 1. …
    4: Staff
  • Richard B. Paris, University of Abertay, Chaps. 8, 11

  • Ranjan Roy, Beloit College, Beloit, Chaps. 1, 4, 5

  • Hans Volkmer, University of Wisconsin, Milwaukee, Chaps. 29, 30

  • Richard B. Paris, University of Abertay Dundee, for Chaps. 8, 11

  • Hans Volkmer, University of Wisconsin–Milwaukee, for Chaps. 29, 30

  • 5: 26.9 Integer Partitions: Restricted Number and Part Size
    Table 26.9.1: Partitions p k ( n ) .
    n k
    6 0 1 4 7 9 10 11 11 11 11 11
    7 0 1 4 8 11 13 14 15 15 15 15
    9 0 1 5 12 18 23 26 28 29 30 30
    Figure 26.9.1: Ferrers graph of the partition 7 + 4 + 3 + 3 + 2 + 1 .
    The conjugate to the example in Figure 26.9.1 is 6 + 5 + 4 + 2 + 1 + 1 + 1 . …
    6: 5.10 Continued Fractions
    5.10.1 Ln Γ ( z ) + z ( z 1 2 ) ln z 1 2 ln ( 2 π ) = a 0 z + a 1 z + a 2 z + a 3 z + a 4 z + a 5 z + ,
    a 1 = 1 30 ,
    a 4 = 22999 22737 ,
    For exact values of a 7 to a 11 and 40S values of a 0 to a 40 , see Char (1980). …
    7: 8.26 Tables
  • Zhang and Jin (1996, Table 3.8) tabulates γ ( a , x ) for a = 0.5 , 1 , 3 , 5 , 10 , 25 , 50 , 100 , x = 0 ( .1 ) 1 ( 1 ) 3 , 5 ( 5 ) 30 , 50 , 100 to 8D or 8S.

  • Pearson (1968) tabulates I x ( a , b ) for x = 0.01 ( .01 ) 1 , a , b = 0.5 ( .5 ) 11 ( 1 ) 50 , with b a , to 7D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 8: 6.19 Tables
  • Abramowitz and Stegun (1964, Chapter 5) includes x 1 Si ( x ) , x 2 Cin ( x ) , x 1 Ein ( x ) , x 1 Ein ( x ) , x = 0 ( .01 ) 0.5 ; Si ( x ) , Ci ( x ) , Ei ( x ) , E 1 ( x ) , x = 0.5 ( .01 ) 2 ; Si ( x ) , Ci ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x = 2 ( .1 ) 10 ; x f ( x ) , x 2 g ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x 1 = 0 ( .005 ) 0.1 ; Si ( π x ) , Cin ( π x ) , x = 0 ( .1 ) 10 . Accuracy varies but is within the range 8S–11S.

  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.

  • 9: Publications
  • Q. Wang and B. V. Saunders (1999) Interactive 3D Visualization of Mathematical Functions Using VRML, Technical Report NISTIR 6289 (February 1999), National Institute of Standards and Technology. PDF
  • B. V. Saunders and Q. Wang (2005) Boundary/Contour Fitted Grid Generation for Effective Visualizations in a Digital Library of Mathematical Functions, Proceedings of the 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, June 11–18, 2005. pp. 61–71. PDF
  • Q. Wang and B. V. Saunders (2005) Web-Based 3D Visualization in a Digital Library of Mathematical Functions, Proceedings of the Web3D Symposium, Bangor, UK, March 29–April 1, 2005. PDF
  • A. Youssef (2007) Methods of Relevance Ranking and Hit-content Generation in Math Search, Proceedings of Mathematical Knowledge Management (MKM2007), RISC, Hagenberg, Austria, June 27–30, 2007. PDF
  • 10: 11 Struve and Related Functions
    Chapter 11 Struve and Related Functions