# .2014年世界杯朝鲜战绩『网址:mxsty.cc』.世界杯1998假球-m6q3s2-2022年11月30日9时27分4秒

(0.005 seconds)

## 1—10 of 533 matching pages

##### 1: 13.30 Tables
• Žurina and Osipova (1964) tabulates $M\left(a,b,x\right)$ and $U\left(a,b,x\right)$ for $b=2$, $a=-0.98(.02)1.10$, $x=0(.01)4$, 7D or 7S.

• Slater (1960) tabulates $M\left(a,b,x\right)$ for $a=-1(.1)1$, $b=0.1(.1)1$, and $x=0.1(.1)10$, 7–9S; $M\left(a,b,1\right)$ for $a=-11(.2)2$ and $b=-4(.2)1$, 7D; the smallest positive $x$-zero of $M\left(a,b,x\right)$ for $a=-4(.1){-}0.1$ and $b=0.1(.1)2.5$, 7D.

• Zhang and Jin (1996, pp. 411–423) tabulates $M\left(a,b,x\right)$ and $U\left(a,b,x\right)$ for $a=-5(.5)5$, $b=0.5(.5)5$, and $x=0.1,1,5,10,20,30$, 8S (for $M\left(a,b,x\right)$) and 7S (for $U\left(a,b,x\right)$).

##### 3: 26.2 Basic Definitions
If, for example, a permutation of the integers 1 through 6 is denoted by $256413$, then the cycles are ${\left(1,2,5\right)}$, ${\left(3,6\right)}$, and ${\left(4\right)}$. …The function $\sigma$ also interchanges 3 and 6, and sends 4 to itself. … As an example, $\{1,3,4\}$, $\{2,6\}$, $\{5\}$ is a partition of $\{1,2,3,4,5,6\}$. … As an example, $\{1,1,1,2,4,4\}$ is a partition of 13. … The example $\{1,1,1,2,4,4\}$ has six parts, three of which equal 1. …
##### 4: Staff
• Richard B. Paris, University of Abertay, Chaps. 8, 11

• Ranjan Roy, Beloit College, Beloit, Chaps. 1, 4, 5

• Hans Volkmer, University of Wisconsin, Milwaukee, Chaps. 29, 30

• Richard B. Paris, University of Abertay Dundee, for Chaps. 8, 11

• Hans Volkmer, University of Wisconsin–Milwaukee, for Chaps. 29, 30

• ##### 5: 26.9 Integer Partitions: Restricted Number and Part Size
The conjugate to the example in Figure 26.9.1 is $6+5+4+2+1+1+1$. …
##### 6: 5.10 Continued Fractions
5.10.1 $\operatorname{Ln}\Gamma\left(z\right)+z-\left(z-\tfrac{1}{2}\right)\ln z-% \tfrac{1}{2}\ln\left(2\pi\right)=\cfrac{a_{0}}{z+\cfrac{a_{1}}{z+\cfrac{a_{2}}% {z+\cfrac{a_{3}}{z+\cfrac{a_{4}}{z+\cfrac{a_{5}}{z+}}}}}}\cdots,$
$a_{1}=\tfrac{1}{30},$
$a_{4}=\tfrac{22999}{22737},$
For exact values of $a_{7}$ to $a_{11}$ and 40S values of $a_{0}$ to $a_{40}$, see Char (1980). …
##### 7: 8.26 Tables
• Zhang and Jin (1996, Table 3.8) tabulates $\gamma\left(a,x\right)$ for $a=0.5,1,3,5,10,25,50,100$, $x=0(.1)1(1)3,5(5)30,50,100$ to 8D or 8S.

• Pearson (1968) tabulates $I_{x}\left(a,b\right)$ for $x=0.01(.01)1$, $a,b=0.5(.5)11(1)50$, with $b\leq a$, to 7D.

• Abramowitz and Stegun (1964, pp. 245–248) tabulates $E_{n}\left(x\right)$ for $n=2,3,4,10,20$, $x=0(.01)2$ to 7D; also $(x+n)e^{x}E_{n}\left(x\right)$ for $n=2,3,4,10,20$, $x^{-1}=0(.01)0.1(.05)0.5$ to 6S.

• Zhang and Jin (1996, Table 19.1) tabulates $E_{n}\left(x\right)$ for $n=1,2,3,5,10,15,20$, $x=0(.1)1,1.5,2,3,5,10,20,30,50,100$ to 7D or 8S.

• ##### 8: 6.19 Tables
• Abramowitz and Stegun (1964, Chapter 5) includes $x^{-1}\operatorname{Si}\left(x\right)$, $-x^{-2}\operatorname{Cin}\left(x\right)$, $x^{-1}\operatorname{Ein}\left(x\right)$, $-x^{-1}\operatorname{Ein}\left(-x\right)$, $x=0(.01)0.5$; $\operatorname{Si}\left(x\right)$, $\operatorname{Ci}\left(x\right)$, $\operatorname{Ei}\left(x\right)$, $E_{1}\left(x\right)$, $x=0.5(.01)2$; $\operatorname{Si}\left(x\right)$, $\operatorname{Ci}\left(x\right)$, $xe^{-x}\operatorname{Ei}\left(x\right)$, $xe^{x}E_{1}\left(x\right)$, $x=2(.1)10$; $x\mathrm{f}\left(x\right)$, $x^{2}\mathrm{g}\left(x\right)$, $xe^{-x}\operatorname{Ei}\left(x\right)$, $xe^{x}E_{1}\left(x\right)$, $x^{-1}=0(.005)0.1$; $\operatorname{Si}\left(\pi x\right)$, $\operatorname{Cin}\left(\pi x\right)$, $x=0(.1)10$. Accuracy varies but is within the range 8S–11S.

• Zhang and Jin (1996, pp. 652, 689) includes $\operatorname{Si}\left(x\right)$, $\operatorname{Ci}\left(x\right)$, $x=0(.5)20(2)30$, 8D; $\operatorname{Ei}\left(x\right)$, $E_{1}\left(x\right)$, $x=[0,100]$, 8S.

• Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of $ze^{z}E_{1}\left(z\right)$, $x=-19(1)20$, $y=0(1)20$, 6D; $e^{z}E_{1}\left(z\right)$, $x=-4(.5)-2$, $y=0(.2)1$, 6D; $E_{1}\left(z\right)+\ln z$, $x=-2(.5)2.5$, $y=0(.2)1$, 6D.

• Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of $E_{1}\left(z\right)$, $\pm x=0.5,1,3,5,10,15,20,50,100$, $y=0(.5)1(1)5(5)30,50,100$, 8S.

• ##### 9: Publications
• Q. Wang and B. V. Saunders (1999) Interactive 3D Visualization of Mathematical Functions Using VRML, Technical Report NISTIR 6289 (February 1999), National Institute of Standards and Technology.
• B. V. Saunders and Q. Wang (2005) Boundary/Contour Fitted Grid Generation for Effective Visualizations in a Digital Library of Mathematical Functions, Proceedings of the 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, June 11–18, 2005. pp. 61–71.
• Q. Wang and B. V. Saunders (2005) Web-Based 3D Visualization in a Digital Library of Mathematical Functions, Proceedings of the Web3D Symposium, Bangor, UK, March 29–April 1, 2005.
• A. Youssef (2007) Methods of Relevance Ranking and Hit-content Generation in Math Search, Proceedings of Mathematical Knowledge Management (MKM2007), RISC, Hagenberg, Austria, June 27–30, 2007.