About the Project

.1994%E5%B9%B4%E4%B8%96%E7%95%8C%E6%9D%AF%E5%B0%8F%E7%BB%84%E5%88%86%E7%BB%84_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F2018%E4%B8%96%E7%95%8C%E6%9D%AF%E7%9B%B4%E6%92%AD%E5%92%AA%E5%92%95_b5p6v3_2022%E5%B9%B411%E6%9C%8830%E6%97%A57%E6%97%B657%E5%88%8610%E7%A7%92_z9fzftt9n.cc

AdvancedHelp

Did you mean .1994%E5%B9%B4%E4%B8%96%E7%95%8C%E6%9D%AF%E5%B0%8F%E7%BB%84%E5%88%86%E7%BB%84_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F2018%E4%B8%96%E7%95%8C%E6%9D%AF%E7%9B%B4%E6%92%AD%E5%92%AA%E5%92%95_b5p6v3_2022%E5%B9%411%E6%9C%883%E6%97%157%E6%97%657%E5%88%861%E7%A7%92_z9fzftt9n.cc ?

(0.100 seconds)

1—10 of 862 matching pages

1: 9.2 Differential Equation
9.2.2 w = Ai ( z ) , Bi ( z ) , Ai ( z e 2 π i / 3 ) .
9.2.3 Ai ( 0 ) = 1 3 2 / 3 Γ ( 2 3 ) = 0.35502 80538 ,
9.2.4 Ai ( 0 ) = 1 3 1 / 3 Γ ( 1 3 ) = 0.25881 94037 ,
9.2.5 Bi ( 0 ) = 1 3 1 / 6 Γ ( 2 3 ) = 0.61492 66274 ,
9.2.6 Bi ( 0 ) = 3 1 / 6 Γ ( 1 3 ) = 0.44828 83573 .
2: 34.6 Definition: 9 j Symbol
§34.6 Definition: 9 j Symbol
The 9 j symbol may be defined either in terms of 3 j symbols or equivalently in terms of 6 j symbols:
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
The 9 j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
3: 19.2 Definitions
where p j is a polynomial in t while ρ and σ are rational functions of t . …
§19.2(iv) A Related Function: R C ( x , y )
Formulas involving Π ( ϕ , α 2 , k ) that are customarily different for circular cases, ordinary hyperbolic cases, and (hyperbolic) Cauchy principal values, are united in a single formula by using R C ( x , y ) . … When x and y are positive, R C ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y : …For the special cases of R C ( x , x ) and R C ( 0 , y ) see (19.6.15). …
4: 26.5 Lattice Paths: Catalan Numbers
C ( n ) is the Catalan number. …(Sixty-six equivalent definitions of C ( n ) are given in Stanley (1999, pp. 219–229).) …
26.5.3 C ( n + 1 ) = k = 0 n C ( k ) C ( n k ) ,
26.5.4 C ( n + 1 ) = 2 ( 2 n + 1 ) n + 2 C ( n ) ,
26.5.7 lim n C ( n + 1 ) C ( n ) = 4 .
5: Bibliography H
  • P. I. Hadži (1975a) Certain integrals that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1975 (2), pp. 8688, 95 (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 8084, 96 (Russian).
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 8084, 95 (Russian).
  • J. Hammack, D. McCallister, N. Scheffner, and H. Segur (1995) Two-dimensional periodic waves in shallow water. II. Asymmetric waves. J. Fluid Mech. 285, pp. 95–122.
  • 6: Bibliography T
  • I. C. Tang (1969) Some definite integrals and Fourier series for Jacobian elliptic functions. Z. Angew. Math. Mech. 49, pp. 9596.
  • N. M. Temme (1994a) A set of algorithms for the incomplete gamma functions. Probab. Engrg. Inform. Sci. 8, pp. 291–307.
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • P. Terwilliger (2013) The universal Askey-Wilson algebra and DAHA of type ( C 1 , C 1 ) . SIGMA 9, pp. Paper 047, 40 pp..
  • J. Todd (1975) The lemniscate constants. Comm. ACM 18 (1), pp. 14–19.
  • 7: 33.20 Expansions for Small | ϵ |
    where
    33.20.4 𝖥 k ( ; r ) = p = 2 k 3 k ( 2 r ) ( p + 1 ) / 2 C k , p J 2 + 1 + p ( 8 r ) , r > 0 ,
    The functions J and I are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by C 0 , 0 = 1 , C 1 , 0 = 0 , and … where A ( ϵ , ) is given by (33.14.11), (33.14.12), and …The functions Y and K are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by (33.20.6). …
    8: Bibliography
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • H. Airault, H. P. McKean, and J. Moser (1977) Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math. 30 (1), pp. 95–148.
  • G. Almkvist and B. Berndt (1988) Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π , and the Ladies Diary. Amer. Math. Monthly 95 (7), pp. 585–608.
  • G. E. Andrews and D. Foata (1980) Congruences for the q -secant numbers. European J. Combin. 1 (4), pp. 283–287.
  • G. E. Andrews, I. P. Goulden, and D. M. Jackson (1986) Shanks’ convergence acceleration transform, Padé approximants and partitions. J. Combin. Theory Ser. A 43 (1), pp. 70–84.
  • 9: 6.14 Integrals
    6.14.1 0 e a t E 1 ( t ) d t = 1 a ln ( 1 + a ) , a > 1 ,
    6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
    6.14.3 0 e a t si ( t ) d t = 1 a arctan a , a > 0 .
    6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
    For collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).
    10: Bibliography S
  • F. W. Schäfke and D. Schmidt (1966) Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung III. Numer. Math. 8 (1), pp. 68–71.
  • B. I. Schneider, X. Guan, and K. Bartschat (2016) Time propagation of partial differential equations using the short iterative Lanczos method and finite-element discrete variable representation. Adv. Quantum Chem. 72, pp. 95–127.
  • J. B. Seaborn (1991) Hypergeometric Functions and Their Applications. Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
  • M. J. Seaton (1982) Coulomb functions analytic in the energy. Comput. Phys. Comm. 25 (1), pp. 87–95.
  • R. Spigler, M. Vianello, and F. Locatelli (1999) Liouville-Green-Olver approximations for complex difference equations. J. Approx. Theory 96 (2), pp. 301–322.