About the Project

.02年世界杯沙特小组赛『网址:mxsty.cc』.世界杯足彩玩法规则.m6q3s2-oeoo02w0g

AdvancedHelp

Your search matched, but the results seem poor.

Did you mean .02年世界杯沙特小组赛『网址:style』.世界杯足彩玩法规则.m6q3s2-oeoo02w0g ?

(0.002 seconds)

7 matching pages

1: 13.30 Tables
  • Žurina and Osipova (1964) tabulates M ( a , b , x ) and U ( a , b , x ) for b = 2 , a = 0.98 ( .02 ) 1.10 , x = 0 ( .01 ) 4 , 7D or 7S.

  • 2: 19.37 Tables
    Tabulated for k = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964), and for k = 0 ( .02 ) 1 to 7D by Zhang and Jin (1996, p. 673). … Tabulated for ϕ = 5 ( 5 ) 80 ( 2.5 ) 90 , α 2 = 1 ( .1 ) 0.1 , 0.1 ( .1 ) 1 , k 2 = 0 ( .05 ) 0.9 ( .02 ) 1 to 10D by Fettis and Caslin (1964) (and warns of inaccuracies in Selfridge and Maxfield (1958) and Paxton and Rollin (1959)). Tabulated for ϕ = 0 ( 1 ) 90 , α 2 = 0 ( .05 ) 0.85 , 0.88 ( .02 ) 0.94 ( .01 ) 0.98 ( .005 ) 1 , k 2 = 0 ( .01 ) 1 to 7S by Beli͡akov et al. (1962). …
    3: 25.19 Tables
  • Morris (1979) tabulates Li 2 ( x ) 25.12(i)) for ± x = 0.02 ( .02 ) 1 ( .1 ) 6 to 30D.

  • 4: 28.35 Tables
  • Blanch and Clemm (1962) includes values of Mc n ( 1 ) ( x , q ) and Mc n ( 1 ) ( x , q ) for n = 0 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Also Ms n ( 1 ) ( x , q ) and Ms n ( 1 ) ( x , q ) for n = 1 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Precision is generally 7D.

  • Blanch and Clemm (1965) includes values of Mc n ( 2 ) ( x , q ) , Mc n ( 2 ) ( x , q ) for n = 0 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . Also Ms n ( 2 ) ( x , q ) , Ms n ( 2 ) ( x , q ) for n = 1 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . In all cases q = 0 ( .05 ) 1 . Precision is generally 7D. Approximate formulas and graphs are also included.

  • 5: 7.23 Tables
  • Zhang and Jin (1996, pp. 637, 639) includes ( 2 / π ) e x 2 , erf x , x = 0 ( .02 ) 1 ( .04 ) 3 , 8D; C ( x ) , S ( x ) , x = 0 ( .2 ) 10 ( 2 ) 100 ( 100 ) 500 , 8D.

  • 6: 9.18 Tables
  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • 7: 10.75 Tables
  • Abramowitz and Stegun (1964, Chapter 9) tabulates j n , m , J n ( j n , m ) , j n , m , J n ( j n , m ) , n = 0 ( 1 ) 8 , m = 1 ( 1 ) 20 , 5D (10D for n = 0 ), y n , m , Y n ( y n , m ) , y n , m , Y n ( y n , m ) , n = 0 ( 1 ) 8 , m = 1 ( 1 ) 20 , 5D (8D for n = 0 ), J 0 ( j 0 , m x ) , m = 1 ( 1 ) 5 , x = 0 ( .02 ) 1 , 5D. Also included are the first 5 zeros of the functions x J 1 ( x ) λ J 0 ( x ) , J 1 ( x ) λ x J 0 ( x ) , J 0 ( x ) Y 0 ( λ x ) Y 0 ( x ) J 0 ( λ x ) , J 1 ( x ) Y 1 ( λ x ) Y 1 ( x ) J 1 ( λ x ) , J 1 ( x ) Y 0 ( λ x ) Y 1 ( x ) J 0 ( λ x ) for various values of λ and λ 1 in the interval [ 0 , 1 ] , 4–8D.