# .02年世界杯沙特小组赛『网址:mxsty.cc』.世界杯足彩玩法规则.m6q3s2-oeoo02w0g

Your search matched, but the results seem poor.

Did you mean .02年世界杯沙特小组赛『网址:style』.世界杯足彩玩法规则.m6q3s2-oeoo02w0g ?

(0.002 seconds)

## 7 matching pages

##### 1: 13.30 Tables
• Žurina and Osipova (1964) tabulates $M\left(a,b,x\right)$ and $U\left(a,b,x\right)$ for $b=2$, $a=-0.98(.02)1.10$, $x=0(.01)4$, 7D or 7S.

• ##### 2: 19.37 Tables
Tabulated for $k=0(.01)1$ to 10D by Fettis and Caslin (1964), and for $k=0(.02)1$ to 7D by Zhang and Jin (1996, p. 673). … Tabulated for $\phi=5^{\circ}(5^{\circ})80^{\circ}(2.5^{\circ})90^{\circ}$, $\alpha^{2}=-1(.1)-0.1,0.1(.1)1$, $k^{2}=0(.05)0.9(.02)1$ to 10D by Fettis and Caslin (1964) (and warns of inaccuracies in Selfridge and Maxfield (1958) and Paxton and Rollin (1959)). Tabulated for $\phi=0(1^{\circ})90^{\circ}$, $\alpha^{2}=0(.05)0.85,0.88(.02)0.94(.01)0.98(.005)1$, $k^{2}=0(.01)1$ to 7S by Beli͡akov et al. (1962). …
##### 3: 25.19 Tables
• Morris (1979) tabulates $\operatorname{Li}_{2}\left(x\right)$25.12(i)) for $\pm x=0.02(.02)1(.1)6$ to 30D.

• ##### 4: 28.35 Tables
• Blanch and Clemm (1962) includes values of ${\operatorname{Mc}^{(1)}_{n}}\left(x,\sqrt{q}\right)$ and ${\operatorname{Mc}^{(1)}_{n}}'\left(x,\sqrt{q}\right)$ for $n=0(1)15$ with $q=0(.05)1$, $x=0(.02)1$. Also ${\operatorname{Ms}^{(1)}_{n}}\left(x,\sqrt{q}\right)$ and ${\operatorname{Ms}^{(1)}_{n}}'\left(x,\sqrt{q}\right)$ for $n=1(1)15$ with $q=0(.05)1$, $x=0(.02)1$. Precision is generally 7D.

• Blanch and Clemm (1965) includes values of ${\operatorname{Mc}^{(2)}_{n}}\left(x,\sqrt{q}\right)$, ${\operatorname{Mc}^{(2)}_{n}}'\left(x,\sqrt{q}\right)$ for $n=0(1)7$, $x=0(.02)1$; $n=8(1)15$, $x=0(.01)1$. Also ${\operatorname{Ms}^{(2)}_{n}}\left(x,\sqrt{q}\right)$, ${\operatorname{Ms}^{(2)}_{n}}'\left(x,\sqrt{q}\right)$ for $n=1(1)7$, $x=0(.02)1$; $n=8(1)15$, $x=0(.01)1$. In all cases $q=0(.05)1$. Precision is generally 7D. Approximate formulas and graphs are also included.

• ##### 5: 7.23 Tables
• Zhang and Jin (1996, pp. 637, 639) includes $(2/\sqrt{\pi})e^{-x^{2}}$, $\operatorname{erf}x$, $x=0(.02)1(.04)3$, 8D; $C\left(x\right)$, $S\left(x\right)$, $x=0(.2)10(2)100(100)500$, 8D.

• ##### 6: 9.18 Tables
• National Bureau of Standards (1958) tabulates $A_{0}(x)\equiv\pi\operatorname{Hi}\left(-x\right)$ and $-A_{0}^{\prime}(x)\equiv\pi\operatorname{Hi}'\left(-x\right)$ for $x=0(.01)1(.02)5(.05)11$ and $1/x=0.01(.01)0.1$; $\int_{0}^{x}A_{0}(t)\,\mathrm{d}t$ for $x=0.5,1(1)11$. Precision is 8D.

• ##### 7: 10.75 Tables
• Abramowitz and Stegun (1964, Chapter 9) tabulates $j_{n,m}$, $J_{n}'\left(j_{n,m}\right)$, ${j^{\prime}_{n,m}}$, $J_{n}\left({j^{\prime}_{n,m}}\right)$, $n=0(1)8$, $m=1(1)20$, 5D (10D for $n=0$), $y_{n,m}$, $Y_{n}'\left(y_{n,m}\right)$, ${y^{\prime}_{n,m}}$, $Y_{n}\left({y^{\prime}_{n,m}}\right)$, $n=0(1)8$, $m=1(1)20$, 5D (8D for $n=0$), $J_{0}\left(j_{0,m}x\right)$, $m=1(1)5$, $x=0(.02)1$, 5D. Also included are the first 5 zeros of the functions $xJ_{1}\left(x\right)-\lambda J_{0}\left(x\right)$, $J_{1}\left(x\right)-\lambda xJ_{0}\left(x\right)$, $J_{0}\left(x\right)Y_{0}\left(\lambda x\right)-Y_{0}\left(x\right)J_{0}\left(% \lambda x\right)$, $J_{1}\left(x\right)Y_{1}\left(\lambda x\right)-Y_{1}\left(x\right)J_{1}\left(% \lambda x\right)$, $J_{1}\left(x\right)Y_{0}\left(\lambda x\right)-Y_{1}\left(x\right)J_{0}\left(% \lambda x\right)$ for various values of $\lambda$ and $\lambda^{-1}$ in the interval $[0,1]$, 4–8D.