About the Project

.02%E5%B9%B4%E4%B8%96%E7%95%8C%E6%9D%AF%E6%B2%99%E7%89%B9%E5%B0%8F%E7%BB%84%E8%B5%9B%E3%80%8E%E7%BD%91%E5%9D%80%3Amxsty.cc%E3%80%8F.%E4%B8%96%E7%95%8C%E6%9D%AF%E8%B6%B3%E5%BD%A9%E7%8E%A9%E6%B3%95%E8%A7%84%E5%88%99.m6q3s2-oeoo02w0g

AdvancedHelp

The terms "amxsty.cc", "m6q3s2", "oeoo02w0g" were not found.Possible alternative term: "style".

(0.035 seconds)

1—10 of 737 matching pages

1: 19.37 Tables
Functions K ( k ) and E ( k )
Tabulated for k 2 = 0 ( .01 ) 1 to 6D by Byrd and Friedman (1971), to 15D for K ( k ) and 9D for E ( k ) by Abramowitz and Stegun (1964, Chapter 17), and to 10D by Fettis and Caslin (1964). Tabulated for k = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964), and for k = 0 ( .02 ) 1 to 7D by Zhang and Jin (1996, p. 673). … Tabulated for ϕ = 5 ( 5 ) 80 ( 2.5 ) 90 , α 2 = 1 ( .1 ) 0.1 , 0.1 ( .1 ) 1 , k 2 = 0 ( .05 ) 0.9 ( .02 ) 1 to 10D by Fettis and Caslin (1964) (and warns of inaccuracies in Selfridge and Maxfield (1958) and Paxton and Rollin (1959)). Tabulated for ϕ = 0 ( 1 ) 90 , α 2 = 0 ( .05 ) 0.85 , 0.88 ( .02 ) 0.94 ( .01 ) 0.98 ( .005 ) 1 , k 2 = 0 ( .01 ) 1 to 7S by Beli͡akov et al. (1962). …
2: 28.35 Tables
  • Blanch and Clemm (1962) includes values of Mc n ( 1 ) ( x , q ) and Mc n ( 1 ) ( x , q ) for n = 0 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Also Ms n ( 1 ) ( x , q ) and Ms n ( 1 ) ( x , q ) for n = 1 ( 1 ) 15 with q = 0 ( .05 ) 1 , x = 0 ( .02 ) 1 . Precision is generally 7D.

  • Blanch and Clemm (1965) includes values of Mc n ( 2 ) ( x , q ) , Mc n ( 2 ) ( x , q ) for n = 0 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . Also Ms n ( 2 ) ( x , q ) , Ms n ( 2 ) ( x , q ) for n = 1 ( 1 ) 7 , x = 0 ( .02 ) 1 ; n = 8 ( 1 ) 15 , x = 0 ( .01 ) 1 . In all cases q = 0 ( .05 ) 1 . Precision is generally 7D. Approximate formulas and graphs are also included.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • Zhang and Jin (1996, pp. 533–535) includes the zeros (in degrees) of ce n ( x , 10 ) , se n ( x , 10 ) for n = 1 ( 1 ) 10 , and the first 5 zeros of Mc n ( j ) ( x , 10 ) , Ms n ( j ) ( x , 10 ) for n = 0 or 1 ( 1 ) 8 , j = 1 , 2 . Precision is mostly 9S.

  • 3: 25.19 Tables
  • Abramowitz and Stegun (1964) tabulates: ζ ( n ) , n = 2 , 3 , 4 , , 20D (p. 811); Li 2 ( 1 x ) , x = 0 ( .01 ) 0.5 , 9D (p. 1005); f ( θ ) , θ = 15 ( 1 ) 30 ( 2 ) 90 ( 5 ) 180 , f ( θ ) + θ ln θ , θ = 0 ( 1 ) 15 , 6D (p. 1006). Here f ( θ ) denotes Clausen’s integral, given by the right-hand side of (25.12.9).

  • Morris (1979) tabulates Li 2 ( x ) 25.12(i)) for ± x = 0.02 ( .02 ) 1 ( .1 ) 6 to 30D.

  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • 4: 7.23 Tables
  • Abramowitz and Stegun (1964, Chapter 7) includes erf x , ( 2 / π ) e x 2 , x [ 0 , 2 ] , 10D; ( 2 / π ) e x 2 , x [ 2 , 10 ] , 8S; x e x 2 erfc x , x 2 [ 0 , 0.25 ] , 7D; 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 1 ( 1 ) 6 , 10 , 11 , x [ 0 , 5 ] , 6S; F ( x ) , x [ 0 , 2 ] , 10D; x F ( x ) , x 2 [ 0 , 0.25 ] , 9D; C ( x ) , S ( x ) , x [ 0 , 5 ] , 7D; f ( x ) , g ( x ) , x [ 0 , 1 ] , x 1 [ 0 , 1 ] , 15D.

  • Abramowitz and Stegun (1964, Table 27.6) includes the Goodwin–Staton integral G ( x ) , x = 1 ( .1 ) 3 ( .5 ) 8 , 4D; also G ( x ) + ln x , x = 0 ( .05 ) 1 , 4D.

  • Zhang and Jin (1996, pp. 637, 639) includes ( 2 / π ) e x 2 , erf x , x = 0 ( .02 ) 1 ( .04 ) 3 , 8D; C ( x ) , S ( x ) , x = 0 ( .2 ) 10 ( 2 ) 100 ( 100 ) 500 , 8D.

  • Abramowitz and Stegun (1964, Chapter 7) includes w ( z ) , x = 0 ( .1 ) 3.9 , y = 0 ( .1 ) 3 , 6D.

  • Zhang and Jin (1996, p. 642) includes the first 10 zeros of erf z , 9D; the first 25 distinct zeros of C ( z ) and S ( z ) , 8S.

  • 5: 13.30 Tables
  • Žurina and Osipova (1964) tabulates M ( a , b , x ) and U ( a , b , x ) for b = 2 , a = 0.98 ( .02 ) 1.10 , x = 0 ( .01 ) 4 , 7D or 7S.

  • 6: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Fox (1960, Table 3) tabulates 2 π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Ai ( x ) , 2 π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Ai ( x ) , π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Bi ( x ) , and π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Bi ( x ) for 3 2 x 3 / 2 = 0 ( .001 ) 0.05 , together with similar auxiliary functions for negative values of x . Precision is 10D.

  • Yakovleva (1969) tabulates Fock’s functions U ( x ) π Bi ( x ) , U ( x ) = π Bi ( x ) , V ( x ) π Ai ( x ) , V ( x ) = π Ai ( x ) for x = 9 ( .001 ) 9 . Precision is 7S.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • Nosova and Tumarkin (1965) tabulates e 0 ( x ) π Hi ( x ) , e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) π Gi ( x ) , e ~ 0 ( x ) = π Gi ( x ) for x = 1 ( .01 ) 10 ; 7D. Also included are the real and imaginary parts of e 0 ( z ) and i e 0 ( z ) , where z = i y and y = 0 ( .01 ) 9 ; 6-7D.

  • 7: 10.75 Tables
  • British Association for the Advancement of Science (1937) tabulates J 0 ( x ) , J 1 ( x ) , x = 0 ( .001 ) 16 ( .01 ) 25 , 10D; Y 0 ( x ) , Y 1 ( x ) , x = 0.01 ( .01 ) 25 , 8–9S or 8D. Also included are auxiliary functions to facilitate interpolation of the tables of Y 0 ( x ) , Y 1 ( x ) for small values of x , as well as auxiliary functions to compute all four functions for large values of x .

  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Abramowitz and Stegun (1964, Chapter 9) tabulates j n , m , J n ( j n , m ) , j n , m , J n ( j n , m ) , n = 0 ( 1 ) 8 , m = 1 ( 1 ) 20 , 5D (10D for n = 0 ), y n , m , Y n ( y n , m ) , y n , m , Y n ( y n , m ) , n = 0 ( 1 ) 8 , m = 1 ( 1 ) 20 , 5D (8D for n = 0 ), J 0 ( j 0 , m x ) , m = 1 ( 1 ) 5 , x = 0 ( .02 ) 1 , 5D. Also included are the first 5 zeros of the functions x J 1 ( x ) λ J 0 ( x ) , J 1 ( x ) λ x J 0 ( x ) , J 0 ( x ) Y 0 ( λ x ) Y 0 ( x ) J 0 ( λ x ) , J 1 ( x ) Y 1 ( λ x ) Y 1 ( x ) J 1 ( λ x ) , J 1 ( x ) Y 0 ( λ x ) Y 1 ( x ) J 0 ( λ x ) for various values of λ and λ 1 in the interval [ 0 , 1 ] , 4–8D.

  • Makinouchi (1966) tabulates all values of j ν , m and y ν , m in the interval ( 0 , 100 ) , with at least 29S. These are for ν = 0 ( 1 ) 5 , 10, 20; ν = 3 2 , 5 2 ; ν = m / n with m = 1 ( 1 ) n 1 and n = 3 ( 1 ) 8 , except for ν = 1 2 .

  • Achenbach (1986) tabulates I 0 ( x ) , I 1 ( x ) , K 0 ( x ) , K 1 ( x ) , x = 0 ( .1 ) 8 , 19D or 19–21S.

  • 8: 9.2 Differential Equation
    9.2.2 w = Ai ( z ) , Bi ( z ) , Ai ( z e 2 π i / 3 ) .
    9.2.3 Ai ( 0 ) = 1 3 2 / 3 Γ ( 2 3 ) = 0.35502 80538 ,
    9.2.4 Ai ( 0 ) = 1 3 1 / 3 Γ ( 1 3 ) = 0.25881 94037 ,
    9.2.5 Bi ( 0 ) = 1 3 1 / 6 Γ ( 2 3 ) = 0.61492 66274 ,
    9.2.6 Bi ( 0 ) = 3 1 / 6 Γ ( 1 3 ) = 0.44828 83573 .
    9: 34.6 Definition: 9 j Symbol
    §34.6 Definition: 9 j Symbol
    The 9 j symbol may be defined either in terms of 3 j symbols or equivalently in terms of 6 j symbols:
    34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
    34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
    The 9 j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
    10: 19.2 Definitions
    The integral for E ( ϕ , k ) is well defined if k 2 = sin 2 ϕ = 1 , and the Cauchy principal value (§1.4(v)) of Π ( ϕ , α 2 , k ) is taken if 1 α 2 sin 2 ϕ vanishes at an interior point of the integration path. …
    §19.2(iv) A Related Function: R C ( x , y )
    Formulas involving Π ( ϕ , α 2 , k ) that are customarily different for circular cases, ordinary hyperbolic cases, and (hyperbolic) Cauchy principal values, are united in a single formula by using R C ( x , y ) . … When x and y are positive, R C ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y : …For the special cases of R C ( x , x ) and R C ( 0 , y ) see (19.6.15). …