About the Project

.新宝2世界杯结束『世界杯佣金分红55%,咨询专员:@ky975』.tbx-k2q1w9-2022年11月29日4时59分17秒

AdvancedHelp

(0.005 seconds)

11—20 of 820 matching pages

11: 4.19 Maclaurin Series and Laurent Series
4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
4.19.5 sec z = 1 + z 2 2 + 5 24 z 4 + 61 720 z 6 + + ( 1 ) n E 2 n ( 2 n ) ! z 2 n + , | z | < 1 2 π ,
4.19.8 ln ( cos z ) = n = 1 ( 1 ) n 2 2 n 1 ( 2 2 n 1 ) B 2 n n ( 2 n ) ! z 2 n , | z | < 1 2 π ,
4.19.9 ln ( tan z z ) = n = 1 ( 1 ) n 1 2 2 n ( 2 2 n 1 1 ) B 2 n n ( 2 n ) ! z 2 n , | z | < 1 2 π .
12: 19.5 Maclaurin and Related Expansions
where F 1 2 is the Gauss hypergeometric function (§§15.1 and 15.2(i)). …
19.5.4_1 F ( ϕ , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 2 ( m + 1 2 , 1 2 m + 3 2 ; sin 2 ϕ ) k 2 m = sin ϕ F 1 ( 1 2 ; 1 2 , 1 2 ; 3 2 ; sin 2 ϕ , k 2 sin 2 ϕ ) ,
19.5.4_2 E ( ϕ , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 2 ( m + 1 2 , 1 2 m + 3 2 ; sin 2 ϕ ) k 2 m = sin ϕ F 1 ( 1 2 ; 1 2 , 1 2 ; 3 2 ; sin 2 ϕ , k 2 sin 2 ϕ ) ,
Coefficients of terms up to λ 49 are given in Lee (1990), along with tables of fractional errors in K ( k ) and E ( k ) , 0.1 k 2 0.9999 , obtained by using 12 different truncations of (19.5.6) in (19.5.8) and (19.5.9). … For series expansions of Π ( ϕ , α 2 , k ) when | α 2 | < 1 see Erdélyi et al. (1953b, §13.6(9)). …
13: 4.33 Maclaurin Series and Laurent Series
4.33.2 cosh z = 1 + z 2 2 ! + z 4 4 ! + .
4.33.3 tanh z = z z 3 3 + 2 15 z 5 17 315 z 7 + + 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π .
For B 2 n see §24.2(i). …
14: 4.22 Infinite Products and Partial Fractions
4.22.1 sin z = z n = 1 ( 1 z 2 n 2 π 2 ) ,
4.22.2 cos z = n = 1 ( 1 4 z 2 ( 2 n 1 ) 2 π 2 ) .
4.22.3 cot z = 1 z + 2 z n = 1 1 z 2 n 2 π 2 ,
4.22.4 csc 2 z = n = 1 ( z n π ) 2 ,
4.22.5 csc z = 1 z + 2 z n = 1 ( 1 ) n z 2 n 2 π 2 .
15: 4.24 Inverse Trigonometric Functions: Further Properties
4.24.2 arccos z = ( 2 ( 1 z ) ) 1 / 2 ( 1 + n = 1 1 3 5 ( 2 n 1 ) 2 2 n ( 2 n + 1 ) n ! ( 1 z ) n ) , | 1 z | 2 .
4.24.5 arctan z = z z 2 + 1 ( 1 + 2 3 z 2 1 + z 2 + 2 4 3 5 ( z 2 1 + z 2 ) 2 + ) , ( z 2 ) > 1 2 ,
4.24.6 x 2 y 2 = 1 2 .
4.24.14 Arccos u ± Arccos v = Arccos ( u v ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) ,
4.24.16 Arcsin u ± Arccos v = Arcsin ( u v ± ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) = Arccos ( v ( 1 u 2 ) 1 / 2 u ( 1 v 2 ) 1 / 2 ) ,
16: 30.9 Asymptotic Approximations and Expansions
§30.9(i) Prolate Spheroidal Wave Functions
As γ 2 + , with q = 2 ( n m ) + 1 , … The asymptotic behavior of λ n m ( γ 2 ) and a n , k m ( γ 2 ) as n in descending powers of 2 n + 1 is derived in Meixner (1944). …The asymptotic behavior of 𝖯𝗌 n m ( x , γ 2 ) and 𝖰𝗌 n m ( x , γ 2 ) as x ± 1 is given in Erdélyi et al. (1955, p. 151). The behavior of λ n m ( γ 2 ) for complex γ 2 and large | λ n m ( γ 2 ) | is investigated in Hunter and Guerrieri (1982). …
17: 24.20 Tables
Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. In Wagstaff (2002) these results are extended to n = 60 ( 2 ) 152 and n = 40 ( 2 ) 88 , respectively, with further complete and partial factorizations listed up to n = 300 and n = 200 , respectively. For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
18: 34.1 Special Notation
2 j 1 , 2 j 2 , 2 j 3 , 2 l 1 , 2 l 2 , 2 l 3 nonnegative integers.
( j 1 j 2 j 3 m 1 m 2 m 3 ) ,
{ j 1 j 2 j 3 l 1 l 2 l 3 } ,
An often used alternative to the 3 j symbol is the Clebsch–Gordan coefficient
34.1.1 ( j 1 m 1 j 2 m 2 | j 1 j 2 j 3 m 3 ) = ( 1 ) j 1 j 2 + m 3 ( 2 j 3 + 1 ) 1 2 ( j 1 j 2 j 3 m 1 m 2 m 3 ) ;
19: 24.12 Zeros
In the interval 0 x 1 the only zeros of B 2 n + 1 ( x ) , n = 1 , 2 , , are 0 , 1 2 , 1 , and the only zeros of B 2 n ( x ) B 2 n , n = 1 , 2 , , are 0 , 1 . … When n ( 2 ) is even … When n is odd y 1 ( n ) = 1 2 , … B n ( x ) , n = 1 , 2 , , has no multiple zeros. The only polynomial E n ( x ) with multiple zeros is E 5 ( x ) = ( x 1 2 ) ( x 2 x 1 ) 2 .
20: 26.16 Multiset Permutations
Let S = { 1 a 1 , 2 a 2 , , n a n } be the multiset that has a j copies of j , 1 j n . …The number of elements in 𝔖 S is the multinomial coefficient (§26.4) ( a 1 + a 2 + + a n a 1 , a 2 , , a n ) . … The definitions of inversion number and major index can be extended to permutations of a multiset such as 351322453154 𝔖 { 1 2 , 2 2 , 3 3 , 4 2 , 5 3 } . Thus inv ( 351322453154 ) = 4 + 8 + 0 + 3 + 1 + 1 + 2 + 3 + 1 + 0 + 1 = 24 , and maj ( 351322453154 ) = 2 + 4 + 8 + 9 + 11 = 34 . and again with S = { 1 a 1 , 2 a 2 , , n a n } we have …