About the Project

.德国足球世界杯合影『网址:mxsty.cc』.2006德国世界杯.m6q3s2-2022年11月29日6时26分11秒.umeqmaekq

AdvancedHelp

Did you mean .德国足球世界杯合影『网址:style』.2006德国世界杯.m6q3s2-2022年11月29日6时26分11秒.umeqmaekq ?

(0.004 seconds)

1—10 of 125 matching pages

1: 11 Struve and Related Functions
Chapter 11 Struve and Related Functions
2: 10 Bessel Functions
3: Publications
  • B. V. Saunders and Q. Wang (2005) Boundary/Contour Fitted Grid Generation for Effective Visualizations in a Digital Library of Mathematical Functions, Proceedings of the 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, June 11–18, 2005. pp. 61–71. PDF
  • Q. Wang and B. V. Saunders (2005) Web-Based 3D Visualization in a Digital Library of Mathematical Functions, Proceedings of the Web3D Symposium, Bangor, UK, March 29–April 1, 2005. PDF
  • B. V. Saunders and Q. Wang (2006) From B-Spline Mesh Generation to Effective Visualizations for the NIST Digital Library of Mathematical Functions, in Curve and Surface Design, Proceedings of the Sixth International Conference on Curves and Surfaces, Avignon, France June 29–July 5, 2006, pp. 235–243. PDF
  • 4: Staff
  • Richard B. Paris, University of Abertay, Chaps. 8, 11

  • Hans Volkmer, University of Wisconsin, Milwaukee, Chaps. 29, 30

  • Richard B. Paris, University of Abertay Dundee, for Chaps. 8, 11

  • Hans Volkmer, University of Wisconsin–Milwaukee, for Chaps. 29, 30

  • 5: 34.6 Definition: 9 j Symbol
    34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
    34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
    6: 26.2 Basic Definitions
    Table 26.2.1: Partitions p ( n ) .
    n p ( n ) n p ( n ) n p ( n )
    6 11 23 1255 40 37338
    11 56 28 3718 45 89134
    12 77 29 4565 46 1 05558
    7: 26.9 Integer Partitions: Restricted Number and Part Size
    Table 26.9.1: Partitions p k ( n ) .
    n k
    6 0 1 4 7 9 10 11 11 11 11 11
    7 0 1 4 8 11 13 14 15 15 15 15
    9 0 1 5 12 18 23 26 28 29 30 30
    8: 34.7 Basic Properties: 9 j Symbol
    34.7.1 { j 11 j 12 j 13 j 21 j 22 j 13 j 31 j 31 0 } = ( 1 ) j 12 + j 21 + j 13 + j 31 ( ( 2 j 13 + 1 ) ( 2 j 31 + 1 ) ) 1 2 { j 11 j 12 j 13 j 22 j 21 j 31 } .
    34.7.2 j 12 j 34 ( 2 j 12 + 1 ) ( 2 j 34 + 1 ) ( 2 j 13 + 1 ) ( 2 j 24 + 1 ) { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } = δ j 13 , j 13 δ j 24 , j 24 .
    34.7.3 j 13 j 24 ( 1 ) 2 j 2 + j 24 + j 23 j 34 ( 2 j 13 + 1 ) ( 2 j 24 + 1 ) { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } { j 1 j 3 j 13 j 4 j 2 j 24 j 14 j 23 j } = { j 1 j 2 j 12 j 4 j 3 j 34 j 14 j 23 j } .
    34.7.4 ( j 13 j 23 j 33 m 13 m 23 m 33 ) { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = m r 1 , m r 2 , r = 1 , 2 , 3 ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) .
    34.7.5 j ( 2 j + 1 ) { j 11 j 12 j j 21 j 22 j 23 j 31 j 32 j 33 } { j 11 j 12 j j 23 j 33 j } = ( 1 ) 2 j { j 21 j 22 j 23 j 12 j j 32 } { j 31 j 32 j 33 j j 11 j 21 } .
    9: 4.17 Special Values and Limits
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
    θ sin θ cos θ tan θ csc θ sec θ cot θ
    11 π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) ( 2 3 ) 2 ( 3 + 1 ) 2 ( 3 1 ) ( 2 + 3 )
    10: 29 Lamé Functions
    Chapter 29 Lamé Functions