About the Project

.威尼斯赌场『wn4.com』澳门威尼斯赌场.威尼斯线上赌场.真的威尼斯赌场.威尼斯娱乐.威尼斯真人.威尼斯棋牌-w6n2c9o.2022年11月29日4时51分18秒.q000s0soc.com

AdvancedHelp

Did you mean .威尼斯赌场『gcn.com』澳门威尼斯赌场.威尼斯线上赌场.真的威尼斯赌场.威尼斯娱乐.威尼斯真人.威尼斯棋牌-2022-06-22年11月29日4时51分18秒.q000s0soc.com ?

(0.003 seconds)

1—10 of 164 matching pages

1: 10 Bessel Functions
2: 29 Lamé Functions
Chapter 29 Lamé Functions
3: Staff
  • Roelof Koekoek, Delft University of Technology, Chap. 18

  • Richard B. Paris, University of Abertay, Chaps. 8, 11

  • Hans Volkmer, University of Wisconsin, Milwaukee, Chaps. 29, 30

  • Richard B. Paris, University of Abertay Dundee, for Chaps. 8, 11

  • Hans Volkmer, University of Wisconsin–Milwaukee, for Chaps. 29, 30

  • 4: Publications
  • B. V. Saunders and Q. Wang (2005) Boundary/Contour Fitted Grid Generation for Effective Visualizations in a Digital Library of Mathematical Functions, Proceedings of the 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, June 1118, 2005. pp. 61–71. PDF
  • Q. Wang and B. V. Saunders (2005) Web-Based 3D Visualization in a Digital Library of Mathematical Functions, Proceedings of the Web3D Symposium, Bangor, UK, March 29–April 1, 2005. PDF
  • B. V. Saunders and Q. Wang (2006) From B-Spline Mesh Generation to Effective Visualizations for the NIST Digital Library of Mathematical Functions, in Curve and Surface Design, Proceedings of the Sixth International Conference on Curves and Surfaces, Avignon, France June 29–July 5, 2006, pp. 235–243. PDF
  • B. Saunders and Q. Wang (2010) Tensor Product B-Spline Mesh Generation for Accurate Surface Visualizations in the NIST Digital Library of Mathematical Functions, in Mathematical Methods for Curves and Surfaces, Proceedings of the 2008 International Conference on Mathematical Methods for Curves and Surfaces (MMCS 2008), Lecture Notes in Computer Science, Vol. 5862, (M. Dæhlen, M. Floater., T. Lyche, J. L. Merrien, K. Mørken, L. L. Schumaker, eds), Springer, Berlin, Heidelberg (2010) pp. 385–393. PDF
  • 5: 26.2 Basic Definitions
    Table 26.2.1: Partitions p ( n ) .
    n p ( n ) n p ( n ) n p ( n )
    1 1 18 385 35 14883
    6 11 23 1255 40 37338
    11 56 28 3718 45 89134
    12 77 29 4565 46 1 05558
    6: 26.9 Integer Partitions: Restricted Number and Part Size
    Table 26.9.1: Partitions p k ( n ) .
    n k
    6 0 1 4 7 9 10 11 11 11 11 11
    7 0 1 4 8 11 13 14 15 15 15 15
    8 0 1 5 10 15 18 20 21 22 22 22
    9 0 1 5 12 18 23 26 28 29 30 30
    7: 11 Struve and Related Functions
    Chapter 11 Struve and Related Functions
    8: 18 Orthogonal Polynomials
    Chapter 18 Orthogonal Polynomials
    9: 1 Algebraic and Analytic Methods
    10: 27.2 Functions
    Table 27.2.1: Primes.
    n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
    5 11 47 97 149 197 257 313 379 439 499
    10 29 71 113 173 229 281 349 409 463 541
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    1 1 1 1 14 6 4 24 27 18 4 40 40 16 8 90
    3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
    11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93