About the Project

.世界杯1比1_『网址:68707.vip』cctv5足球世界杯录像_b5p6v3_wka0kcuei.com

AdvancedHelp

(0.007 seconds)

31—40 of 848 matching pages

31: 6.10 Other Series Expansions
c 0 = 1 ,
c 1 = 1 ,
c 2 = 1 2 ,
6.10.8 Ein ( z ) = z e z / 2 ( 𝗂 0 ( 1 ) ( 1 2 z ) + n = 1 2 n + 1 n ( n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) ) .
An expansion for E 1 ( z ) can be obtained by combining (6.2.4) and (6.10.8).
32: 10.49 Explicit Formulas
Define a k ( ν ) as in (10.17.1). … Again, with a k ( n + 1 2 ) as in (10.49.1),
10.49.8 𝗂 n ( 1 ) ( z ) = 1 2 e z k = 0 n ( 1 ) k a k ( n + 1 2 ) z k + 1 + ( 1 ) n + 1 1 2 e z k = 0 n a k ( n + 1 2 ) z k + 1 .
𝗂 0 ( 1 ) ( z ) = sinh z z ,
k = 0 n a k ( n + 1 2 ) z n k is sometimes called the Bessel polynomial of degree n . …
33: 1.12 Continued Fractions
b 0 + a 1 b 1 + a 2 b 2 + is equivalent to b 0 + a 1 b 1 + a 2 b 2 + if there is a sequence { d n } n = 0 , d 0 = 1 ,
d n 0 , such that … when p k 0 , k = 1 , 2 , 3 , . …when c k 0 , k = 1 , 2 , 3 , . … The continued fraction a 1 b 1 + a 2 b 2 + converges when … Let the elements of the continued fraction 1 b 1 + 1 b 2 + satisfy …
34: 10.52 Limiting Forms
10.52.1 𝗃 n ( z ) , 𝗂 n ( 1 ) ( z ) z n / ( 2 n + 1 ) !! ,
𝗁 n ( 1 ) ( z ) i n 1 z 1 e i z ,
𝗁 n ( 2 ) ( z ) i n + 1 z 1 e i z ,
35: 15.11 Riemann’s Differential Equation
15.11.2 a 1 + a 2 + b 1 + b 2 + c 1 + c 2 = 1 .
Here { a 1 , a 2 } , { b 1 , b 2 } , { c 1 , c 2 } are the exponent pairs at the points α , β , γ , respectively. Cases in which there are fewer than three singularities are included automatically by allowing the choice { 0 , 1 } for exponent pairs. … where κ , λ , μ , ν are real or complex constants such that κ ν λ μ = 1 . …
15.11.8 z λ ( 1 z ) μ P { 0 1 a 1 b 1 c 1 z a 2 b 2 c 2 } = P { 0 1 a 1 + λ b 1 + μ c 1 λ μ z a 2 + λ b 2 + μ c 2 λ μ } ,
36: 16.4 Argument Unity
The function F q q + 1 ( 𝐚 ; 𝐛 ; z ) is well-poised if …It is very well-poised if it is well-poised and a 1 = b 1 + 1 . … The special case F q q + 1 ( 𝐚 ; 𝐛 ; 1 ) is k -balanced if a q + 1 is a nonpositive integer and … with limiting form a ( ψ ( a + n + 1 ) ψ ( a ) ) = a d d a ( a ) n + 1 ( a ) n + 1 in the case that c = a + 1 . … Transformations for both balanced F 3 4 ( 1 ) and very well-poised F 6 7 ( 1 ) are included in Bailey (1964, pp. 56–63). …
37: 24.12 Zeros
In the interval 0 x 1 the only zeros of B 2 n + 1 ( x ) , n = 1 , 2 , , are 0 , 1 2 , 1 , and the only zeros of B 2 n ( x ) B 2 n , n = 1 , 2 , , are 0 , 1 . … Then the zeros in the interval < x 1 2 are 1 x j ( n ) . … When n is odd x 1 ( n ) = 1 2 , x 2 ( n ) = 1 ( n 3 ) , and as n with m ( 1 ) fixed, … Then the zeros in the interval < x 1 2 are 1 y j ( n ) . … When n is odd y 1 ( n ) = 1 2 , …
38: 35.8 Generalized Hypergeometric Functions of Matrix Argument
Let p and q be nonnegative integers; a 1 , , a p ; b 1 , , b q ; b j + 1 2 ( k + 1 ) , 1 j q , 1 k m . … If a j + 1 2 ( k + 1 ) for some j , k satisfying 1 j p , 1 k m , then the series expansion (35.8.1) terminates. … Let c = b 1 + b 2 a 1 a 2 a 3 . … Let a 1 + a 2 + a 3 + 1 2 ( m + 1 ) = b 1 + b 2 ; one of the a j be a negative integer; ( b 1 a 1 ) , ( b 1 a 2 ) , ( b 1 a 3 ) , ( b 1 a 1 a 2 a 3 ) > 1 2 ( m 1 ) . … Again, let c = b 1 + b 2 a 1 a 2 a 3 . …
39: 6.9 Continued Fraction
6.9.1 E 1 ( z ) = e z z + 1 1 + 1 z + 2 1 + 2 z + 3 1 + 3 z + , | ph z | < π .
40: 8.5 Confluent Hypergeometric Representations
For the confluent hypergeometric functions M , 𝐌 , U , and the Whittaker functions M κ , μ and W κ , μ , see §§13.2(i) and 13.14(i).
8.5.1 γ ( a , z ) = a 1 z a e z M ( 1 , 1 + a , z ) = a 1 z a M ( a , 1 + a , z ) , a 0 , 1 , 2 , .
8.5.3 Γ ( a , z ) = e z U ( 1 a , 1 a , z ) = z a e z U ( 1 , 1 + a , z ) .
8.5.4 γ ( a , z ) = a 1 z 1 2 a 1 2 e 1 2 z M 1 2 a 1 2 , 1 2 a ( z ) .
8.5.5 Γ ( a , z ) = e 1 2 z z 1 2 a 1 2 W 1 2 a 1 2 , 1 2 a ( z ) .