About the Project

.世界杯足球决赛时间表_『网址:68707.vip』世界杯德国的球员名单_b5p6v3_2022年11月29日4时47分38秒_mgo6cgio4

AdvancedHelp

Did you mean .世界杯足球决赛时间表_『网址:687.vii』世界杯德国的球员名单_b5p6v3_2022年11月29日4时47分38秒_mgo6cgio4 ?

(0.005 seconds)

1—10 of 141 matching pages

1: Publications
  • D. W. Lozier (2003) The NIST Digital Library of Mathematical Functions Project, Annals of Mathematics and Artificial Intelligence—Special Issue on Mathematical Knowledge Management, Vol. 38, Nos. 1–3, pp. 105–119. PDF
  • B. R. Miller and A. Youssef (2003) Technical Aspects of the Digital Library of Mathematical Functions, Annals of Mathematics and Artificial Intelligence—Special Issue on Mathematical Knowledge Management, Vol. 38, Nos. 1–3, pp. 121–136. PDF
  • B. V. Saunders and Q. Wang (2005) Boundary/Contour Fitted Grid Generation for Effective Visualizations in a Digital Library of Mathematical Functions, Proceedings of the 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, June 11–18, 2005. pp. 61–71. PDF
  • Q. Wang and B. V. Saunders (2005) Web-Based 3D Visualization in a Digital Library of Mathematical Functions, Proceedings of the Web3D Symposium, Bangor, UK, March 29–April 1, 2005. PDF
  • B. V. Saunders and Q. Wang (2006) From B-Spline Mesh Generation to Effective Visualizations for the NIST Digital Library of Mathematical Functions, in Curve and Surface Design, Proceedings of the Sixth International Conference on Curves and Surfaces, Avignon, France June 29–July 5, 2006, pp. 235–243. PDF
  • 2: 10 Bessel Functions
    3: 26.2 Basic Definitions
    Table 26.2.1: Partitions p ( n ) .
    n p ( n ) n p ( n ) n p ( n )
    4 5 21 792 38 26015
    6 11 23 1255 40 37338
    11 56 28 3718 45 89134
    12 77 29 4565 46 1 05558
    4: 26.9 Integer Partitions: Restricted Number and Part Size
    Table 26.9.1: Partitions p k ( n ) .
    n k
    6 0 1 4 7 9 10 11 11 11 11 11
    7 0 1 4 8 11 13 14 15 15 15 15
    9 0 1 5 12 18 23 26 28 29 30 30
    10 0 1 6 14 23 30 35 38 40 41 42
    5: 11 Struve and Related Functions
    Chapter 11 Struve and Related Functions
    6: Staff
  • Richard B. Paris, University of Abertay, Chaps. 8, 11

  • Hans Volkmer, University of Wisconsin, Milwaukee, Chaps. 29, 30

  • Richard B. Paris, University of Abertay Dundee, for Chaps. 8, 11

  • Hans Volkmer, University of Wisconsin–Milwaukee, for Chaps. 29, 30

  • 7: 29 Lamé Functions
    Chapter 29 Lamé Functions
    8: 27.2 Functions
    Table 27.2.1: Primes.
    n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
    5 11 47 97 149 197 257 313 379 439 499
    10 29 71 113 173 229 281 349 409 463 541
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
    11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
    12 4 6 28 25 20 3 31 38 18 4 60 51 32 4 72
    9: Bibliography
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • L. V. Ahlfors (1966) Complex Analysis: An Introduction of the Theory of Analytic Functions of One Complex Variable. 2nd edition, McGraw-Hill Book Co., New York.
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • V. I. Arnol’d (1974) Normal forms of functions in the neighborhood of degenerate critical points. Uspehi Mat. Nauk 29 (2(176)), pp. 11–49 (Russian).
  • R. Askey (1980) Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal. 11 (6), pp. 938–951.
  • 10: Bibliography L
  • D. Le (1985) An efficient derivative-free method for solving nonlinear equations. ACM Trans. Math. Software 11 (3), pp. 250–262.
  • A. Leitner and J. Meixner (1960) Eine Verallgemeinerung der Sphäroidfunktionen. Arch. Math. 11, pp. 29–39.
  • H. Lotsch and M. Gray (1964) Algorithm 244: Fresnel integrals. Comm. ACM 7 (11), pp. 660–661.
  • N. A. Lukaševič (1967b) On the theory of Painlevé’s third equation. Differ. Uravn. 3 (11), pp. 1913–1923 (Russian).
  • Y. L. Luke (1977a) Algorithms for rational approximations for a confluent hypergeometric function. Utilitas Math. 11, pp. 123–151.