About the Project

.世界杯决赛的时间_『网址:68707.vip』日本2014年世界杯成绩_b5p6v3_2022年11月29日5时20分49秒_ewk244wui

AdvancedHelp

Did you mean .世界杯决赛的时间_『网址:687.vii』日本2014年世界杯成绩_b5p6v3_2022年11月29日5时20分49秒_ewk244wui ?

(0.002 seconds)

1—10 of 156 matching pages

1: Wadim Zudilin
Zudilin is author or coauthor of numerous publications including the book Neverending Fractions, An Introduction to Continued Fractions published by Cambridge University Press in 2014. He received the Distinguished Award of the Hardy–Ramanujan Society in 2001 and was one of the co-recipients of the 2014 G. …
2: Bibliography G
  • E. A. Galapon and K. M. L. Martinez (2014) Exactification of the Poincaré asymptotic expansion of the Hankel integral: spectacularly accurate asymptotic expansions and non-asymptotic scales. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2162), pp. 20130529, 16.
  • R. E. Gaunt (2014) Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420 (1), pp. 373–386.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • A. Gil and J. Segura (2014) On the complex zeros of Airy and Bessel functions and those of their derivatives. Anal. Appl. (Singap.) 12 (5), pp. 537–561.
  • V. I. Gromak (1975) Theory of Painlevé’s equations. Differ. Uravn. 11 (11), pp. 373–376 (Russian).
  • 3: 14.32 Methods of Computation
  • For the computation of conical functions see Gil et al. (2009, 2012), and Dunster (2014).

  • 4: Bibliography D
  • D. Dai, M. E. H. Ismail, and X. Wang (2014) Plancherel-Rotach asymptotic expansion for some polynomials from indeterminate moment problems. Constr. Approx. 40 (1), pp. 61–104.
  • E. Dorrer (1968) Algorithm 322. F-distribution. Comm. ACM 11 (2), pp. 116–117.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.
  • J. Dutka (1981) The incomplete beta function—a historical profile. Arch. Hist. Exact Sci. 24 (1), pp. 1129.
  • 5: Barry I. Schneider
    Before coming to NIST in 2014, he was a postdoctoral research associate at the University of Southern California (1969-1970), and a staff member of the General Telephone and Electronics Laboratory (1970-1972). …In early 2014, he came to NIST as General Editor of the DLMF project. …
    6: 10.77 Software
  • Gil et al. (2014). Fortran.

  • Ratnanather et al. (2014). MATLAB.

  • 7: Bibliography
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • V. I. Arnol’d (1974) Normal forms of functions in the neighborhood of degenerate critical points. Uspehi Mat. Nauk 29 (2(176)), pp. 1149 (Russian).
  • R. Askey (1980) Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal. 11 (6), pp. 938–951.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 8: DLMF Project News
    error generating summary
    9: Bibliography L
  • A. Leitner and J. Meixner (1960) Eine Verallgemeinerung der Sphäroidfunktionen. Arch. Math. 11, pp. 29–39.
  • J. L. López and E. Pérez Sinusía (2014) New series expansions for the confluent hypergeometric function M ( a , b , z ) . Appl. Math. Comput. 235, pp. 26–31.
  • H. Lotsch and M. Gray (1964) Algorithm 244: Fresnel integrals. Comm. ACM 7 (11), pp. 660–661.
  • N. A. Lukaševič (1967b) On the theory of Painlevé’s third equation. Differ. Uravn. 3 (11), pp. 1913–1923 (Russian).
  • Y. L. Luke (1977a) Algorithms for rational approximations for a confluent hypergeometric function. Utilitas Math. 11, pp. 123–151.
  • 10: 10.37 Inequalities; Monotonicity
    See also Pal tsev (1999), Petropoulou (2000), Segura (2011) and Gaunt (2014).