About the Project

.%E9%98%BF%E6%A0%B9%E5%BB%B7%E4%B8%96%E7%95%8C%E6%9D%AF%E9%A2%84%E9%80%89%E8%B5%9B_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E4%B8%96%E7%95%8C%E6%9D%AF%E5%A1%9E%E5%B0%94%E7%BB%B4%E4%BA%9A%E5%AF%B9%E5%93%A5_b5p6v3_2022%E5%B9%B411%E6%9C%8828%E6%97%A521%E6%97%B621%E5%88%8647%E7%A7%92_6smwawga4

AdvancedHelp

Did you mean .%E9%98%BF%E6%A0%B9%E5%BB%B7%E4%B8%96%E7%95%8C%E6%9D%AF%E9%A2%84%E9%80%89%E8%B5%9B_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E4%B8%96%E7%95%8C%E6%9D%AF%E5%A1%9E%E5%B0%94%E7%BB%B4%E4%BA%9A%E5%AF%B9%E5%93%A5_b5p6v3_2022%E5%B9%411%E6%9C%882%E6%97%521%E6%97%621%E5%88%86475%E7%A7%92_6smwawga4 ?

(0.021 seconds)

1—10 of 738 matching pages

1: Bibliography I
  • A. Iserles, S. P. Nørsett, and S. Olver (2006) Highly Oscillatory Quadrature: The Story So Far. In Numerical Mathematics and Advanced Applications, A. Bermudez de Castro and others (Eds.), pp. 97–118.
  • M. E. H. Ismail (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • M. E. H. Ismail (2009) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • 2: 6.14 Integrals
    6.14.1 0 e a t E 1 ( t ) d t = 1 a ln ( 1 + a ) , a > 1 ,
    6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
    For collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 9698, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).
    3: 15.7 Continued Fractions
    15.7.1 𝐅 ( a , b ; c ; z ) 𝐅 ( a , b + 1 ; c + 1 ; z ) = t 0 u 1 z t 1 u 2 z t 2 u 3 z t 3 ,
    4: 33.20 Expansions for Small | ϵ |
    where
    33.20.4 𝖥 k ( ; r ) = p = 2 k 3 k ( 2 r ) ( p + 1 ) / 2 C k , p J 2 + 1 + p ( 8 r ) , r > 0 ,
    The functions J and I are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by C 0 , 0 = 1 , C 1 , 0 = 0 , and … where A ( ϵ , ) is given by (33.14.11), (33.14.12), and …The functions Y and K are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by (33.20.6). …
    5: 34.5 Basic Properties: 6 j Symbol
    34.5.1 { j 1 j 2 j 3 0 j 3 j 2 } = ( 1 ) J ( ( 2 j 2 + 1 ) ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.2 { j 1 j 2 j 3 1 2 j 3 1 2 j 2 + 1 2 } = ( 1 ) J ( ( j 1 + j 3 j 2 ) ( j 1 + j 2 j 3 + 1 ) ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.3 { j 1 j 2 j 3 1 2 j 3 1 2 j 2 1 2 } = ( 1 ) J ( ( j 2 + j 3 j 1 ) ( j 1 + j 2 + j 3 + 1 ) 2 j 2 ( 2 j 2 + 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.4 { j 1 j 2 j 3 1 j 3 1 j 2 1 } = ( 1 ) J ( J ( J + 1 ) ( J 2 j 1 ) ( J 2 j 1 1 ) ( 2 j 2 1 ) 2 j 2 ( 2 j 2 + 1 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    For further recursion relations see Varshalovich et al. (1988, §9.6) and Edmonds (1974, pp. 98–99). …
    6: Bibliography O
  • O. M. Ogreid and P. Osland (1998) Summing one- and two-dimensional series related to the Euler series. J. Comput. Appl. Math. 98 (2), pp. 245–271.
  • A. B. Olde Daalhuis (1998b) Hyperterminants. II. J. Comput. Appl. Math. 89 (1), pp. 87–95.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1995) On an asymptotic expansion of a ratio of gamma functions. Proc. Roy. Irish Acad. Sect. A 95 (1), pp. 5–9.
  • C. Osácar, J. Palacián, and M. Palacios (1995) Numerical evaluation of the dilogarithm of complex argument. Celestial Mech. Dynam. Astronom. 62 (1), pp. 9398.
  • 7: 25.5 Integral Representations
    25.5.7 ζ ( s ) = 1 2 + 1 s 1 + m = 1 n B 2 m ( 2 m ) ! ( s ) 2 m 1 + 1 Γ ( s ) 0 ( 1 e x 1 1 x + 1 2 m = 1 n B 2 m ( 2 m ) ! x 2 m 1 ) x s 1 e x d x , s > ( 2 n + 1 ) , n = 1 , 2 , 3 , .
    25.5.10 ζ ( s ) = 2 s 1 1 2 1 s 0 cos ( s arctan x ) ( 1 + x 2 ) s / 2 cosh ( 1 2 π x ) d x .
    25.5.12 ζ ( s ) = 2 s 1 s 1 2 s 0 sin ( s arctan x ) ( 1 + x 2 ) s / 2 ( e π x + 1 ) d x .
    For θ 3 see §20.2(i). … The contour here is any loop that encircles the origin in the positive direction not enclosing any of the points ± π i , ± 3 π i , ….
    8: 27.2 Functions
    27.2.9 d ( n ) = d | n 1
    It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that σ 0 ( n ) = d ( n ) . … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    13 12 2 14 26 12 4 42 39 24 4 56 52 24 6 98
    9: Bibliography N
  • M. Nardin, W. F. Perger, and A. Bhalla (1992a) Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Software 18 (3), pp. 345–349.
  • D. Naylor (1996) On an asymptotic expansion of the Kontorovich-Lebedev transform. Methods Appl. Anal. 3 (1), pp. 98–108.
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • H. M. Nussenzveig (1965) High-frequency scattering by an impenetrable sphere. Ann. Physics 34 (1), pp. 23–95.
  • 10: 10.60 Sums
    10.60.14 n = 0 ( 2 n + 1 ) ( 𝗃 n ( z ) ) 2 = 1 3 .
    For collections of sums of series relevant to spherical Bessel functions or Bessel functions of half odd integer order see Erdélyi et al. (1953b, pp. 43–45 and 98–105), Gradshteyn and Ryzhik (2000, §§8.51, 8.53), Hansen (1975), Magnus et al. (1966, pp. 106–108 and 123–138), and Prudnikov et al. (1986b, pp. 635–637 and 651–700). …