About the Project

.%E8%B6%B3%E7%90%83%E5%BD%A9%E7%A5%A8%E4%B8%96%E7%95%8C%E6%9D%AF%E7%8E%A9%E6%B3%95__%E3%80%8Ewn4.com_%E3%80%8F_%E4%B8%96%E7%95%8C%E6%9D%AF%E7%94%A8%E7%90%83_w6n2c9o_2022%E5%B9%B411%E6%9C%8830%E6%97%A522%E6%97%B640%E5%88%8637%E7%A7%92_ttnjbxtnd.com

AdvancedHelp

Did you mean .%E8%B6%B3%E7%90%83%E5%BD%A9%E7%A5%A8%E4%B8%96%E7%95%8C%E6%9D%AF%E7%8E%A9%E6%B3%95__%E3%80%8Ewn4.com_%E3%80%8F_%E4%B8%96%E7%95%8C%E6%9D%AF%E7%94%A8%E7%90%83_w6n2c9o_2022%E5%B9%411%E6%9C%883%E6%97%522%E6%97%640%E5%88%863%E7%A7%92_ttnjbxtnd.com ?

(0.075 seconds)

1—10 of 821 matching pages

1: 19.37 Tables
Tabulated for ϕ = 0 ( 5 ) 90 , k 2 = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). Tabulated for ϕ = 0 ( 1 ) 90 , k 2 = 0 ( .01 ) 1 to 7S by Beli͡akov et al. (1962). … Tabulated for ϕ = 0 ( 5 ) 90 , k = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). Tabulated for ϕ = 0 ( 5 ) 90 , arcsin k = 0 ( 1 ) 90 to 6D by Byrd and Friedman (1971), for ϕ = 0 ( 5 ) 90 , arcsin k = 0 ( 2 ) 90 and 5 ( 10 ) 85 to 8D by Abramowitz and Stegun (1964, Chapter 17), and for ϕ = 0 ( 10 ) 90 , arcsin k = 0 ( 5 ) 90 to 9D by Zhang and Jin (1996, pp. 674–675). … Tabulated (with different notation) for ϕ = 0 ( 15 ) 90 , α 2 = 0 ( .1 ) 1 , arcsin k = 0 ( 15 ) 90 to 5D by Abramowitz and Stegun (1964, Chapter 17), and for ϕ = 0 ( 15 ) 90 , α 2 = 0 ( .1 ) 1 , arcsin k = 0 ( 15 ) 90 to 7D by Zhang and Jin (1996, pp. 676–677). …
2: 20.15 Tables
This reference gives θ j ( x , q ) , j = 1 , 2 , 3 , 4 , and their logarithmic x -derivatives to 4D for x / π = 0 ( .1 ) 1 , α = 0 ( 9 ) 90 , where α is the modular angle given by
20.15.1 sin α = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) = k .
Spenceley and Spenceley (1947) tabulates θ 1 ( x , q ) / θ 2 ( 0 , q ) , θ 2 ( x , q ) / θ 2 ( 0 , q ) , θ 3 ( x , q ) / θ 4 ( 0 , q ) , θ 4 ( x , q ) / θ 4 ( 0 , q ) to 12D for u = 0 ( 1 ) 90 , α = 0 ( 1 ) 89 , where u = 2 x / ( π θ 3 2 ( 0 , q ) ) and α is defined by (20.15.1), together with the corresponding values of θ 2 ( 0 , q ) and θ 4 ( 0 , q ) . Lawden (1989, pp. 270–279) tabulates θ j ( x , q ) , j = 1 , 2 , 3 , 4 , to 5D for x = 0 ( 1 ) 90 , q = 0.1 ( .1 ) 0.9 , and also q to 5D for k 2 = 0 ( .01 ) 1 . Tables of Neville’s theta functions θ s ( x , q ) , θ c ( x , q ) , θ d ( x , q ) , θ n ( x , q ) (see §20.1) and their logarithmic x -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for ε , α = 0 ( 5 ) 90 , where (in radian measure) ε = x / θ 3 2 ( 0 , q ) = π x / ( 2 K ( k ) ) , and α is defined by (20.15.1). …
3: 5.16 Sums
5.16.1 k = 1 ( 1 ) k ψ ( k ) = π 2 8 ,
5.16.2 k = 1 1 k ψ ( k + 1 ) = ζ ( 3 ) = 1 2 ψ ′′ ( 1 ) .
For related sums involving finite field analogs of the gamma and beta functions (Gauss and Jacobi sums) see Andrews et al. (1999, Chapter 1) and Terras (1999, pp. 90, 149).
4: 14.33 Tables
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 5–8D; 𝖯 n ( x ) for n = 1 ( 1 ) 4 , 9 , 10 , x = 0 ( .01 ) 1 , 5–7D; 𝖰 n ( x ) and 𝖰 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 6–8D; P n ( x ) and P n ( x ) for n = 0 ( 1 ) 5 , 9 , 10 , x = 1 ( .2 ) 10 , 6S; Q n ( x ) and Q n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 1 ( .2 ) 10 , 6S. (Here primes denote derivatives with respect to x .)

  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Belousov (1962) tabulates 𝖯 n m ( cos θ ) (normalized) for m = 0 ( 1 ) 36 , n m = 0 ( 1 ) 56 , θ = 0 ( 2.5 ) 90 , 6D.

  • Žurina and Karmazina (1964, 1965) tabulate the conical functions 𝖯 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7D. Auxiliary tables are included to facilitate computation for larger values of τ when 1 < x < 1 .

  • Žurina and Karmazina (1963) tabulates the conical functions 𝖯 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7S. Auxiliary tables are included to assist computation for larger values of τ when 1 < x < 1 .

  • 5: 33.26 Software
  • Noble (2004). Fortran 90.

  • 6: Bibliography E
  • Á. Elbert (2001) Some recent results on the zeros of Bessel functions and orthogonal polynomials. J. Comput. Appl. Math. 133 (1-2), pp. 65–83.
  • A. Erdélyi (1942b) The Fuchsian equation of second order with four singularities. Duke Math. J. 9 (1), pp. 48–58.
  • D. Erricolo and G. Carluccio (2013) Algorithm 934: Fortran 90 subroutines to compute Mathieu functions for complex values of the parameter. ACM Trans. Math. Softw. 40 (1), pp. 8:1–8:19.
  • D. Erricolo (2006) Algorithm 861: Fortran 90 subroutines for computing the expansion coefficients of Mathieu functions using Blanch’s algorithm. ACM Trans. Math. Software 32 (4), pp. 622–634.
  • T. Estermann (1959) On the representations of a number as a sum of three squares. Proc. London Math. Soc. (3) 9, pp. 575–594.
  • 7: 4.48 Software
  • Kearfott (1996). Fortran 90.

  • 8: 27.2 Functions
    Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers, …where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . … An equivalent form states that the n th prime p n (when the primes are listed in increasing order) is asymptotic to n ln n as n : … It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that σ 0 ( n ) = d ( n ) . …
    9: 22.21 Tables
    Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . … Lawden (1989, pp. 280–284 and 293–297) tabulates sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , ( x , k ) , Z ( x | k ) to 5D for k = 0.1 ( .1 ) 0.9 , x = 0 ( .1 ) X , where X ranges from 1. …
    10: 25.19 Tables
  • Abramowitz and Stegun (1964) tabulates: ζ ( n ) , n = 2 , 3 , 4 , , 20D (p. 811); Li 2 ( 1 x ) , x = 0 ( .01 ) 0.5 , 9D (p. 1005); f ( θ ) , θ = 15 ( 1 ) 30 ( 2 ) 90 ( 5 ) 180 , f ( θ ) + θ ln θ , θ = 0 ( 1 ) 15 , 6D (p. 1006). Here f ( θ ) denotes Clausen’s integral, given by the right-hand side of (25.12.9).

  • Morris (1979) tabulates Li 2 ( x ) 25.12(i)) for ± x = 0.02 ( .02 ) 1 ( .1 ) 6 to 30D.

  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.