About the Project

.%E5%A5%A5%E4%B9%94%E4%BA%9A%E4%B8%96%E7%95%8C%E6%9D%AF%E6%89%91%E6%95%91%E3%80%8E%E7%BD%91%E5%9D%80%3Amxsty.cc%E3%80%8F.%E4%B8%96%E7%95%8C%E6%9D%AF%E4%BA%9A%E8%BF%90%E4%BC%9A.m4x5s2-2022%E5%B9%B411%E6%9C%8829%E6%97%A54%E6%97%B650%E5%88%8610%E7%A7%92eosssivzt

AdvancedHelp

Did you mean .%E5%A5%A5%E4%B9%94%E4%BA%9A%E4%B8%96%E7%95%8C%E6%9D%AF%E6%89%91%E6%95%91%E3%80%8E%E7%BD%91%E5%9D%80%3Amxsty.cc%E3%80%8F.%E4%B8%96%E7%95%8C%E6%9D%AF%E4%BA%9A%E8%BF%90%E4%BC%9A.m4x5s2-2022%E5%B9%411%E6%9C%882%E6%97%254%E6%97%650%E5%88%861%E7%A7%92eosssivzt ?

(0.044 seconds)

1—10 of 742 matching pages

1: 34.6 Definition: 9 ⁒ j Symbol
§34.6 Definition: 9 ⁒ j Symbol
β–ΊThe 9 ⁒ j symbol may be defined either in terms of 3 ⁒ j symbols or equivalently in terms of 6 ⁒ j symbols: β–Ί
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  ⁒ m r ⁒ s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ⁒ ( j 21 j 22 j 23 m 21 m 22 m 23 ) ⁒ ( j 31 j 32 j 33 m 31 m 32 m 33 ) ⁒ ( j 11 j 21 j 31 m 11 m 21 m 31 ) ⁒ ( j 12 j 22 j 32 m 12 m 22 m 32 ) ⁒ ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
β–Ί
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 ⁒ j ⁒ ( 2 ⁒ j + 1 ) ⁒ { j 11 j 21 j 31 j 32 j 33 j } ⁒ { j 12 j 22 j 32 j 21 j j 23 } ⁒ { j 13 j 23 j 33 j j 11 j 12 } .
β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: 9.2 Differential Equation
β–Ί
9.2.2 w = Ai ⁑ ( z ) , Bi ⁑ ( z ) , Ai ⁑ ( z ⁒ e βˆ“ 2 ⁒ Ο€ ⁒ i / 3 ) .
β–Ί
9.2.3 Ai ⁑ ( 0 ) = 1 3 2 / 3 ⁒ Ξ“ ⁑ ( 2 3 ) = 0.35502 80538 ⁒ ,
β–Ί
9.2.4 Ai ⁑ ( 0 ) = 1 3 1 / 3 ⁒ Ξ“ ⁑ ( 1 3 ) = 0.25881 94037 ⁒ ,
β–Ί
9.2.5 Bi ⁑ ( 0 ) = 1 3 1 / 6 ⁒ Ξ“ ⁑ ( 2 3 ) = 0.61492 66274 ⁒ ,
β–Ί
9.2.6 Bi ⁑ ( 0 ) = 3 1 / 6 Ξ“ ⁑ ( 1 3 ) = 0.44828 83573 ⁒ .
3: Bibliography H
β–Ί
  • P. I. HadΕΎi (1972) Certain sums that contain cylindrical functions. Bul. Akad. Ε tiince RSS Moldoven. 1972 (3), pp. 75–77, 94 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1976a) Expansions for the probability function in series of ČebyΕ‘ev polynomials and Bessel functions. Bul. Akad. Ε tiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Ε tiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • β–Ί
  • M. H. Halley, D. Delande, and K. T. Taylor (1993) The combination of R -matrix and complex coordinate methods: Application to the diamagnetic Rydberg spectra of Ba and Sr. J. Phys. B 26 (12), pp. 1775–1790.
  • β–Ί
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • 4: Bibliography N
    β–Ί
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • β–Ί
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 9194.
  • β–Ί
  • E. Neuman (2004) Inequalities involving Bessel functions of the first kind. JIPAM. J. Inequal. Pure Appl. Math. 5 (4), pp. Article 94, 4 pp. (electronic).
  • β–Ί
  • N. E. Nørlund (1955) Hypergeometric functions. Acta Math. 94, pp. 289–349.
  • β–Ί
  • H. M. Nussenzveig (1965) High-frequency scattering by an impenetrable sphere. Ann. Physics 34 (1), pp. 23–95.
  • 5: 15.7 Continued Fractions
    β–Ί
    15.7.1 𝐅 ⁑ ( a , b ; c ; z ) 𝐅 ⁑ ( a , b + 1 ; c + 1 ; z ) = t 0 u 1 ⁒ z t 1 u 2 ⁒ z t 2 u 3 ⁒ z t 3 β‹― ,
    β–Ί β–Ί
    6: 25.16 Mathematical Applications
    β–Ί
    25.16.2 ψ ⁑ ( x ) = x ΢ ⁑ ( 0 ) ΢ ⁑ ( 0 ) ρ x ρ ρ + o ⁑ ( 1 ) , x ,
    β–Ί
    25.16.4 ψ ⁑ ( x ) = x + O ⁑ ( x 1 2 + ϡ ) , x ,
    β–Ί H ⁑ ( s ) has a simple pole with residue ΞΆ ⁑ ( 1 2 ⁒ r ) ( = B 2 ⁒ r / ( 2 ⁒ r ) ) at each odd negative integer s = 1 2 ⁒ r , r = 1 , 2 , 3 , . … β–Ί
    25.16.14 r = 1 k = 1 r 1 r ⁒ k ⁒ ( r + k ) = 5 4 ⁒ ΢ ⁑ ( 3 ) ,
    β–Ί
    25.16.15 r = 1 k = 1 r 1 r 2 ⁒ ( r + k ) = 3 4 ⁒ ΢ ⁑ ( 3 ) .
    7: Bibliography Z
    β–Ί
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • β–Ί
  • M. R. Zaghloul (2017) Algorithm 985: Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function. ACM Trans. Math. Softw. 44 (2), pp. 22:1–22:9.
  • β–Ί
  • J. Zeng (1992) Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials. Proc. London Math. Soc. (3) 65 (1), pp. 1–22.
  • β–Ί
  • J. Zhang (1996) A note on the Ο„ -method approximations for the Bessel functions Y 0 ⁒ ( z ) and Y 1 ⁒ ( z ) . Comput. Math. Appl. 31 (9), pp. 63–70.
  • β–Ί
  • A. Zhedanov (1998) On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval. J. Approx. Theory 94 (1), pp. 73–106.
  • 8: Bibliography
    β–Ί
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • β–Ί
  • G. E. Andrews and R. Askey (1985) Classical Orthogonal Polynomials. In Orthogonal Polynomials and Applications, C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, and A. Ronveaux (Eds.), Lecture Notes in Math., Vol. 1171, pp. 36–62.
  • β–Ί
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • β–Ί
  • T. M. Apostol (1985b) Note on the trivial zeros of Dirichlet L -functions. Proc. Amer. Math. Soc. 94 (1), pp. 29–30.
  • β–Ί
  • F. M. Arscott (1959) A new treatment of the ellipsoidal wave equation. Proc. London Math. Soc. (3) 9, pp. 21–50.
  • 9: Bibliography W
    β–Ί
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • β–Ί
  • J. K. G. Watson (1999) Asymptotic approximations for certain 6 - j and 9 - j symbols. J. Phys. A 32 (39), pp. 6901–6902.
  • β–Ί
  • J. V. Wehausen and E. V. Laitone (1960) Surface Waves. In Handbuch der Physik, Vol. 9, Part 3, pp. 446–778.
  • β–Ί
  • R. Wong and H. Li (1992b) Asymptotic expansions for second-order linear difference equations. J. Comput. Appl. Math. 41 (1-2), pp. 65–94.
  • β–Ί
  • F. J. Wright (1980) The Stokes set of the cusp diffraction catastrophe. J. Phys. A 13 (9), pp. 2913–2928.
  • 10: Bibliography F
    β–Ί
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • β–Ί
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • β–Ί
  • S. R. Finch (2003) Mathematical Constants. Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, Cambridge.
  • β–Ί
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • β–Ί
  • B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.