About the Project

.%E5%8D%A1%E5%A1%94%E5%B0%94%E4%B8%96%E7%95%8C%E6%9D%AF%E5%A5%96%E9%87%91_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E4%B8%96%E7%95%8C%E6%9D%AF%E7%AB%9E%E7%8C%9C_b5p6v3_2022%E5%B9%B411%E6%9C%8830%E6%97%A521%E6%97%B649%E5%88%8653%E7%A7%92_3vjzhlfvb.cc

AdvancedHelp

Did you mean .%E5%8D%A1%E5%A1%94%E5%B0%94%E4%B8%96%E7%95%8C%E6%9D%AF%E5%A5%96%E9%87%91_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E4%B8%96%E7%95%8C%E6%9D%AF%E7%AB%9E%E7%8C%9C_b5p6v3_2022%E5%B9%411%E6%9C%883%E6%97%521%E6%97%649%E5%88%865%E7%A7%92_3vjzhlfvb.cc ?

(0.048 seconds)

1—10 of 720 matching pages

1: 8 Incomplete Gamma and Related
Functions
Chapter 8 Incomplete Gamma and Related Functions
2: 28.25 Asymptotic Expansions for Large z
D 1 ± = 0 ,
D 0 ± = 1 ,
28.25.3 ( m + 1 ) D m + 1 ± + ( ( m + 1 2 ) 2 ± ( m + 1 4 ) 8 i h + 2 h 2 a ) D m ± ± ( m 1 2 ) ( 8 i h m ) D m 1 ± = 0 , m 0 .
The upper signs correspond to M ν ( 3 ) ( z , h ) and the lower signs to M ν ( 4 ) ( z , h ) . The expansion (28.25.1) is valid for M ν ( 3 ) ( z , h ) when …
3: 26.10 Integer Partitions: Other Restrictions
p ( 𝒟 , n ) denotes the number of partitions of n into distinct parts. p m ( 𝒟 , n ) denotes the number of partitions of n into at most m distinct parts. p ( 𝒟 k , n ) denotes the number of partitions of n into parts with difference at least k . …If more than one restriction applies, then the restrictions are separated by commas, for example, p ( 𝒟 2 , T , n ) . … Note that p ( 𝒟 3 , n ) p ( 𝒟 3 , n ) , with strict inequality for n 9 . …
4: 26.6 Other Lattice Path Numbers
Delannoy Number D ( m , n )
D ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . …
Table 26.6.1: Delannoy numbers D ( m , n ) .
m n
26.6.4 r ( n ) = D ( n , n ) D ( n + 1 , n 1 ) , n 1 .
26.6.10 D ( m , n ) = D ( m , n 1 ) + D ( m 1 , n ) + D ( m 1 , n 1 ) , m , n 1 ,
5: 1.11 Zeros of Polynomials
Set z = w 1 3 a to reduce f ( z ) = z 3 + a z 2 + b z + c to g ( w ) = w 3 + p w + q , with p = ( 3 b a 2 ) / 3 , q = ( 2 a 3 9 a b + 27 c ) / 27 . … Addition of 1 3 a to each of these roots gives the roots of f ( z ) = 0 . … Resolvent cubic is z 3 + 12 z 2 + 20 z + 9 = 0 with roots θ 1 = 1 , θ 2 = 1 2 ( 11 + 85 ) , θ 3 = 1 2 ( 11 85 ) , and θ 1 = 1 , θ 2 = 1 2 ( 17 + 5 ) , θ 3 = 1 2 ( 17 5 ) . … Let … Then f ( z ) , with a n 0 , is stable iff a 0 0 ; D 2 k > 0 , k = 1 , , 1 2 n ; sign D 2 k + 1 = sign a 0 , k = 0 , 1 , , 1 2 n 1 2 .
6: 21.5 Modular Transformations
Let 𝐀 , 𝐁 , 𝐂 , and 𝐃 be g × g matrices with integer elements such that
21.5.1 𝚪 = [ 𝐀 𝐁 𝐂 𝐃 ]
21.5.4 θ ( [ [ 𝐂 𝛀 + 𝐃 ] 1 ] T 𝐳 | [ 𝐀 𝛀 + 𝐁 ] [ 𝐂 𝛀 + 𝐃 ] 1 ) = ξ ( 𝚪 ) det [ 𝐂 𝛀 + 𝐃 ] e π i 𝐳 [ [ 𝐂 𝛀 + 𝐃 ] 1 𝐂 ] 𝐳 θ ( 𝐳 | 𝛀 ) .
Here ξ ( 𝚪 ) is an eighth root of unity, that is, ( ξ ( 𝚪 ) ) 8 = 1 . …
21.5.9 θ [ 𝐃 𝜶 𝐂 𝜷 + 1 2 diag [ 𝐂 𝐃 T ] 𝐁 𝜶 + 𝐀 𝜷 + 1 2 diag [ 𝐀 𝐁 T ] ] ( [ [ 𝐂 𝛀 + 𝐃 ] 1 ] T 𝐳 | [ 𝐀 𝛀 + 𝐁 ] [ 𝐂 𝛀 + 𝐃 ] 1 ) = κ ( 𝜶 , 𝜷 , 𝚪 ) det [ 𝐂 𝛀 + 𝐃 ] e π i 𝐳 [ [ 𝐂 𝛀 + 𝐃 ] 1 𝐂 ] 𝐳 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) ,
7: 28.8 Asymptotic Expansions for Large q
For recurrence relations for the coefficients in these expansions see Frenkel and Portugal (2001, §3). … Also let ξ = 2 h cos x and D m ( ξ ) = e ξ 2 / 4 𝐻𝑒 m ( ξ ) 18.3). …
28.8.4 U m ( ξ ) D m ( ξ ) 1 2 6 h ( D m + 4 ( ξ ) 4 ! ( m 4 ) D m 4 ( ξ ) ) + 1 2 13 h 2 ( D m + 8 ( ξ ) 2 5 ( m + 2 ) D m + 4 ( ξ ) + 4 !  2 5 ( m 1 ) ( m 4 ) D m 4 ( ξ ) + 8 ! ( m 8 ) D m 8 ( ξ ) ) + ,
28.8.5 V m ( ξ ) 1 2 4 h ( D m + 2 ( ξ ) m ( m 1 ) D m 2 ( ξ ) ) + 1 2 10 h 2 ( D m + 6 ( ξ ) + ( m 2 25 m 36 ) D m + 2 ( ξ ) m ( m 1 ) ( m 2 + 27 m 10 ) D m 2 ( ξ ) 6 ! ( m 6 ) D m 6 ( ξ ) ) + ,
28.8.6 C ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 + 2 m + 1 8 h + m 4 + 2 m 3 + 263 m 2 + 262 m + 108 2048 h 2 + ) 1 / 2 ,
8: 27.2 Functions
27.2.9 d ( n ) = d | n 1
It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that σ 0 ( n ) = d ( n ) . … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
9: 19.27 Asymptotic Approximations and Expansions
§19.27(ii) R F ( x , y , z )
§19.27(iv) R D ( x , y , z )
19.27.7 R D ( x , y , z ) = 3 2 z 3 / 2 ( ln ( 8 z a + g ) 2 ) ( 1 + O ( a z ) ) , a / z 0 .
19.27.8 R D ( x , y , z ) = 3 x y z 6 x y R G ( x , y , 0 ) ( 1 + O ( z g ) ) , z / g 0 .
19.27.10 R D ( x , y , z ) = R D ( 0 , y , z ) 3 x h z ( 1 + O ( x h ) ) , x / h 0 .
10: 19.29 Reduction of General Elliptic Integrals
and α , β , γ , δ is any permutation of the numbers 1 , 2 , 3 , 4 , then … The advantages of symmetric integrals for tables of integrals and symbolic integration are illustrated by (19.29.4) and its cubic case, which replace the 8 + 8 + 12 = 28 formulas in Gradshteyn and Ryzhik (2000, 3.147, 3.131, 3.152) after taking x 2 as the variable of integration in 3. …where the arguments of the R D function are, in order, ( a b ) ( u c ) , ( b c ) ( a u ) , ( a b ) ( b c ) . … The first choice gives a formula that includes the 18+9+18 = 45 formulas in Gradshteyn and Ryzhik (2000, 3.133, 3.156, 3.158), and the second choice includes the 8+8+8+12 = 36 formulas in Gradshteyn and Ryzhik (2000, 3.151, 3.149, 3.137, 3.157) (after setting x 2 = t in some cases). … where …