About the Project

������������������������������degree���������������ADXC68���YELKeUi

AdvancedHelp

(0.002 seconds)

11—20 of 131 matching pages

11: 31.8 Solutions via Quadratures
31.8.2 w ± ( 𝐦 ; λ ; z ) = Ψ g , N ( λ , z ) exp ( ± i ν ( λ ) 2 z 0 z t m 1 ( t 1 ) m 2 ( t a ) m 3 d t Ψ g , N ( λ , t ) t ( t 1 ) ( t a ) )
Here Ψ g , N ( λ , z ) is a polynomial of degree g in λ and of degree N = m 0 + m 1 + m 2 + m 3 in z , that is a solution of the third-order differential equation satisfied by a product of any two solutions of Heun’s equation. The degree g is given by
31.8.3 g = 1 2 max ( 2 max 0 k 3 m k , 1 + N ( 1 + ( 1 ) N ) ( 1 2 + min 0 k 3 m k ) ) .
12: 14.31 Other Applications
§14.31(iii) Miscellaneous
Legendre functions P ν ( x ) of complex degree ν appear in the application of complex angular momentum techniques to atomic and molecular scattering (Connor and Mackay (1979)). …
13: 14.11 Derivatives with Respect to Degree or Order
§14.11 Derivatives with Respect to Degree or Order
14.11.3 𝖠 ν μ ( x ) = sin ( ν π ) ( 1 + x 1 x ) μ / 2 k = 0 ( 1 2 1 2 x ) k Γ ( k ν ) Γ ( k + ν + 1 ) k ! Γ ( k μ + 1 ) ( ψ ( k + ν + 1 ) ψ ( k ν ) ) .
14: 14.14 Continued Fractions
14.14.1 1 2 ( x 2 1 ) 1 / 2 P ν μ ( x ) P ν μ 1 ( x ) = x 0 y 0 + x 1 y 1 + x 2 y 2 + ,
14.14.3 ( ν μ ) Q ν μ ( x ) Q ν 1 μ ( x ) = x 0 y 0 x 1 y 1 x 2 y 2 , ν μ ,
15: 30.5 Functions of the Second Kind
30.5.1 𝖰𝗌 n m ( x , γ 2 ) , n = m , m + 1 , m + 2 , .
30.5.2 𝖰𝗌 n m ( x , γ 2 ) = ( 1 ) n m + 1 𝖰𝗌 n m ( x , γ 2 ) ,
30.5.4 𝒲 { 𝖯𝗌 n m ( x , γ 2 ) , 𝖰𝗌 n m ( x , γ 2 ) } = ( n + m ) ! ( 1 x 2 ) ( n m ) ! A n m ( γ 2 ) A n m ( γ 2 ) ( 0 ) ,
16: George E. Andrews
He holds honorary degrees from the Universities of Parma, Florida, Waterloo, Illinois, and SASTRA University (India). …
17: Ranjan Roy
(1974) degrees in mathematics from the Indian Institute of Technology Kharagpur, Indian Institute of Technology Kanpur, and the State University of New York at Stony Brook, respectively. …
18: 14.10 Recurrence Relations and Derivatives
14.10.1 𝖯 ν μ + 2 ( x ) + 2 ( μ + 1 ) x ( 1 x 2 ) 1 / 2 𝖯 ν μ + 1 ( x ) + ( ν μ ) ( ν + μ + 1 ) 𝖯 ν μ ( x ) = 0 ,
14.10.2 ( 1 x 2 ) 1 / 2 𝖯 ν μ + 1 ( x ) ( ν μ + 1 ) 𝖯 ν + 1 μ ( x ) + ( ν + μ + 1 ) x 𝖯 ν μ ( x ) = 0 ,
14.10.3 ( ν μ + 2 ) 𝖯 ν + 2 μ ( x ) ( 2 ν + 3 ) x 𝖯 ν + 1 μ ( x ) + ( ν + μ + 1 ) 𝖯 ν μ ( x ) = 0 ,
14.10.4 ( 1 x 2 ) d 𝖯 ν μ ( x ) d x = ( μ ν 1 ) 𝖯 ν + 1 μ ( x ) + ( ν + 1 ) x 𝖯 ν μ ( x ) ,
14.10.5 ( 1 x 2 ) d 𝖯 ν μ ( x ) d x = ( ν + μ ) 𝖯 ν 1 μ ( x ) ν x 𝖯 ν μ ( x ) .
19: 30.4 Functions of the First Kind
30.4.1 1 1 ( 𝖯𝗌 n m ( x , γ 2 ) ) 2 d x = 2 2 n + 1 ( n + m ) ! ( n m ) ! ,
30.4.3 𝖯𝗌 n m ( x , γ 2 ) = ( 1 ) n m 𝖯𝗌 n m ( x , γ 2 ) .
30.4.4 𝖯𝗌 n m ( x , γ 2 ) = ( 1 x 2 ) 1 2 m k = 0 g k x k , 1 x 1 ,
20: 14.9 Connection Formulas
14.9.3 𝖯 ν m ( x ) = ( 1 ) m Γ ( ν m + 1 ) Γ ( ν + m + 1 ) 𝖯 ν m ( x ) ,
14.9.4 𝖰 ν m ( x ) = ( 1 ) m Γ ( ν m + 1 ) Γ ( ν + m + 1 ) 𝖰 ν m ( x ) , ν m 1 , m 2 , .
14.9.13 P ν m ( x ) = Γ ( ν m + 1 ) Γ ( ν + m + 1 ) P ν m ( x ) , ν m 1 , m 2 , .
14.9.14 𝑸 ν μ ( x ) = 𝑸 ν μ ( x ) ,
14.9.16 𝑸 ν μ ( x ) = ( 1 2 π ) 1 / 2 ( x 2 1 ) 1 / 4 P μ ( 1 / 2 ) ν ( 1 / 2 ) ( x ( x 2 1 ) 1 / 2 ) .