About the Project

���������������������������������V���ATV1819���e3y6

AdvancedHelp

(0.001 seconds)

11—20 of 69 matching pages

11: 12.13 Sums
12.13.3 V ( a , x + y ) = e 1 2 x y + 1 4 y 2 m = 0 ( a 1 2 m ) y m V ( a m , x ) ,
12.13.4 V ( a , x + y ) = e 1 2 x y 1 4 y 2 m = 0 y m m ! V ( a + m , x ) .
12: 12.21 Software
13: 12.4 Power-Series Expansions
12.4.2 V ( a , z ) = V ( a , 0 ) u 1 ( a , z ) + V ( a , 0 ) u 2 ( a , z ) ,
14: 12.19 Tables
  • Abramowitz and Stegun (1964, Chapter 19) includes U ( a , x ) and V ( a , x ) for ± a = 0 ( .1 ) 1 ( .5 ) 5 , x = 0 ( .1 ) 5 , 5S; W ( a , ± x ) for ± a = 0 ( .1 ) 1 ( 1 ) 5 , x = 0 ( .1 ) 5 , 4-5D or 4-5S.

  • Zhang and Jin (1996, pp. 455–473) includes U ( ± n 1 2 , x ) , V ( ± n 1 2 , x ) , U ( ± ν 1 2 , x ) , V ( ± ν 1 2 , x ) , and derivatives, ν = n + 1 2 , n = 0 ( 1 ) 10 ( 10 ) 30 , x = 0.5 , 1 , 5 , 10 , 30 , 50 , 8S; W ( a , ± x ) , W ( a , ± x ) , and derivatives, a = h ( 1 ) 5 + h , x = 0.5 , 1 and a = h ( 1 ) 5 + h , x = 5 , h = 0 , 0.5 , 8S. Also, first zeros of U ( a , x ) , V ( a , x ) , and of derivatives, a = 6 ( .5 ) 1 , 6D; first three zeros of W ( a , x ) and of derivative, a = 0 ( .5 ) 4 , 6D; first three zeros of W ( a , ± x ) and of derivative, a = 0.5 ( .5 ) 5.5 , 6D; real and imaginary parts of U ( a , z ) , a = 1.5 ( 1 ) 1.5 , z = x + i y , x = 0.5 , 1 , 5 , 10 , y = 0 ( .5 ) 10 , 8S.

  • 15: 12.20 Approximations
    As special cases of these results a Chebyshev-series expansion for U ( a , x ) valid when λ x < follows from (12.7.14), and Chebyshev-series expansions for U ( a , x ) and V ( a , x ) valid when 0 x λ follow from (12.4.1), (12.4.2), (12.7.12), and (12.7.13). …
    16: 35.2 Laplace Transform
    Assume that 𝓢 | g ( 𝐔 + i 𝐕 ) | d 𝐕 converges, and also that its limit as 𝐔 is 0 . …where the integral is taken over all 𝐙 = 𝐔 + i 𝐕 such that 𝐔 > 𝐗 0 and 𝐕 ranges over 𝓢 . …
    17: 12.17 Physical Applications
    Setting w = U ( ξ ) V ( η ) W ( ζ ) and separating variables, we obtain …
    d 2 V d η 2 + ( σ η 2 λ ) V = 0 ,
    18: 10.69 Uniform Asymptotic Expansions for Large Order
    Let U k ( p ) and V k ( p ) be the polynomials defined in §10.41(ii), and …
    10.69.4 ber ν ( ν x ) + i bei ν ( ν x ) e ν ξ x ( ξ 2 π ν ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 V k ( ξ 1 ) ν k ,
    10.69.5 ker ν ( ν x ) + i kei ν ( ν x ) e ν ξ x ( π ξ 2 ν ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 ( 1 ) k V k ( ξ 1 ) ν k ,
    19: 12.9 Asymptotic Expansions for Large Variable
    12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
    12.9.4 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s ± i Γ ( 1 2 a ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 3 4 π δ .
    To obtain approximations for U ( a , z ) and V ( a , z ) as z combine the results above with (12.2.15) and (12.2.16). …
    20: 10.41 Asymptotic Expansions for Large Order
    Also, U k ( p ) and V k ( p ) are polynomials in p of degree 3 k , given by U 0 ( p ) = V 0 ( p ) = 1 , and …
    V 1 ( p ) = 1 24 ( 9 p + 7 p 3 ) ,
    V 2 ( p ) = 1 1152 ( 135 p 2 + 594 p 4 455 p 6 ) ,
    V 3 ( p ) = 1 4 14720 ( 42525 p 3 + 4 51737 p 5 8 83575 p 7 + 4 75475 p 9 ) .
    For numerical tables of η = η ( z ) and the coefficients U k ( p ) , V k ( p ) , see Olver (1962, pp. 43–51). …