About the Project

也门护照样本资料【言正 微aptao168】5AYnp

AdvancedHelp

(0.002 seconds)

11—20 of 286 matching pages

11: 10.3 Graphics
See accompanying text
Figure 10.3.2: J 5 ( x ) , Y 5 ( x ) , M 5 ( x ) , 0 x 15 . Magnify
See accompanying text
Figure 10.3.3: J 5 ( x ) , Y 5 ( x ) , N 5 ( x ) , 0 x 15 . Magnify
See accompanying text
Figure 10.3.4: θ 5 ( x ) , ϕ 5 ( x ) , 0 x 15 . Magnify
See accompanying text
Figure 10.3.5: J ν ( x ) , 0 x 10 , 0 ν 5 . Magnify 3D Help
See accompanying text
Figure 10.3.19: J ~ 5 ( x ) , Y ~ 5 ( x ) , 0.01 x 10 . Magnify
12: 13.30 Tables
  • Zhang and Jin (1996, pp. 411–423) tabulates M ( a , b , x ) and U ( a , b , x ) for a = 5 ( .5 ) 5 , b = 0.5 ( .5 ) 5 , and x = 0.1 , 1 , 5 , 10 , 20 , 30 , 8S (for M ( a , b , x ) ) and 7S (for U ( a , b , x ) ).

  • 13: 28.16 Asymptotic Expansions for Large q
    28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
    14: Simon Ruijsenaars
    15: 14.33 Tables
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 5–8D; 𝖯 n ( x ) for n = 1 ( 1 ) 4 , 9 , 10 , x = 0 ( .01 ) 1 , 5–7D; 𝖰 n ( x ) and 𝖰 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 6–8D; P n ( x ) and P n ( x ) for n = 0 ( 1 ) 5 , 9 , 10 , x = 1 ( .2 ) 10 , 6S; Q n ( x ) and Q n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 1 ( .2 ) 10 , 6S. (Here primes denote derivatives with respect to x .)

  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Žurina and Karmazina (1964, 1965) tabulate the conical functions 𝖯 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7D. Auxiliary tables are included to facilitate computation for larger values of τ when 1 < x < 1 .

  • Žurina and Karmazina (1963) tabulates the conical functions 𝖯 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7S. Auxiliary tables are included to assist computation for larger values of τ when 1 < x < 1 .

  • 16: 8.26 Tables
  • Pearson (1965) tabulates the function I ( u , p ) ( = P ( p + 1 , u ) ) for p = 1 ( .05 ) 0 ( .1 ) 5 ( .2 ) 50 , u = 0 ( .1 ) u p to 7D, where I ( u , u p ) rounds off to 1 to 7D; also I ( u , p ) for p = 0.75 ( .01 ) 1 , u = 0 ( .1 ) 6 to 5D.

  • Zhang and Jin (1996, Table 3.8) tabulates γ ( a , x ) for a = 0.5 , 1 , 3 , 5 , 10 , 25 , 50 , 100 , x = 0 ( .1 ) 1 ( 1 ) 3 , 5 ( 5 ) 30 , 50 , 100 to 8D or 8S.

  • Zhang and Jin (1996, Table 3.9) tabulates I x ( a , b ) for x = 0 ( .05 ) 1 , a = 0.5 , 1 , 3 , 5 , 10 , b = 1 , 10 to 8D.

  • Stankiewicz (1968) tabulates E n ( x ) for n = 1 ( 1 ) 10 , x = 0.01 ( .01 ) 5 to 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 17: 23 Weierstrass Elliptic and Modular
    Functions
    18: 26.2 Basic Definitions
    If, for example, a permutation of the integers 1 through 6 is denoted by 256413 , then the cycles are ( 1 , 2 , 5 ) , ( 3 , 6 ) , and ( 4 ) . Here σ ( 1 ) = 2 , σ ( 2 ) = 5 , and σ ( 5 ) = 1 . … As an example, { 1 , 3 , 4 } , { 2 , 6 } , { 5 } is a partition of { 1 , 2 , 3 , 4 , 5 , 6 } . … For the actual partitions ( π ) for n = 1 ( 1 ) 5 see Table 26.4.1. …
    Table 26.2.1: Partitions p ( n ) .
    n p ( n ) n p ( n ) n p ( n )
    4 5 21 792 38 26015
    19: 26.9 Integer Partitions: Restricted Number and Part Size
    Table 26.9.1: Partitions p k ( n ) .
    n k
    0 1 2 3 4 5 6 7 8 9 10
    4 0 1 3 4 5 5 5 5 5 5 5
    5 0 1 3 5 6 7 7 7 7 7 7
    The conjugate to the example in Figure 26.9.1 is 6 + 5 + 4 + 2 + 1 + 1 + 1 . …
    Figure 26.9.2: The partition 5 + 5 + 3 + 2 represented as a lattice path.
    20: 4.33 Maclaurin Series and Laurent Series
    4.33.1 sinh z = z + z 3 3 ! + z 5 5 ! + ,
    4.33.3 tanh z = z z 3 3 + 2 15 z 5 17 315 z 7 + + 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π .