About the Project

”Blockchain” Helpdesk Number 1206⤄360⤄1604 customer Care ☎️"Number"

AdvancedHelp

Did you mean lecainhelper Number 1206⤄360⤄1604 customer Care ☎️"Number" ?

(0.003 seconds)

1—10 of 239 matching pages

1: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
2: 27.18 Methods of Computation: Primes
§27.18 Methods of Computation: Primes
An overview of methods for precise counting of the number of primes not exceeding an arbitrary integer x is given in Crandall and Pomerance (2005, §3.7). …An analytic approach using a contour integral of the Riemann zeta function (§25.2(i)) is discussed in Borwein et al. (2000). … These algorithms are used for testing primality of Mersenne numbers, 2 n 1 , and Fermat numbers, 2 2 n + 1 . …
3: 26.11 Integer Partitions: Compositions
c ( n ) denotes the number of compositions of n , and c m ( n ) is the number of compositions into exactly m parts. c ( T , n ) is the number of compositions of n with no 1’s, where again T = { 2 , 3 , 4 , } . …
26.11.1 c ( 0 ) = c ( T , 0 ) = 1 .
The Fibonacci numbers are determined recursively by … Additional information on Fibonacci numbers can be found in Rosen et al. (2000, pp. 140–145).
4: 26.6 Other Lattice Path Numbers
§26.6 Other Lattice Path Numbers
Delannoy Number D ( m , n )
Motzkin Number M ( n )
Narayana Number N ( n , k )
§26.6(iv) Identities
5: 24.15 Related Sequences of Numbers
§24.15 Related Sequences of Numbers
§24.15(i) Genocchi Numbers
§24.15(ii) Tangent Numbers
§24.15(iii) Stirling Numbers
§24.15(iv) Fibonacci and Lucas Numbers
6: 26.5 Lattice Paths: Catalan Numbers
§26.5 Lattice Paths: Catalan Numbers
§26.5(i) Definitions
C ( n ) is the Catalan number. …
§26.5(ii) Generating Function
§26.5(iii) Recurrence Relations
7: 4.19 Maclaurin Series and Laurent Series
In (4.19.3)–(4.19.9), B n are the Bernoulli numbers and E n are the Euler numbers (§§24.2(i)24.2(ii)).
4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
4.19.5 sec z = 1 + z 2 2 + 5 24 z 4 + 61 720 z 6 + + ( 1 ) n E 2 n ( 2 n ) ! z 2 n + , | z | < 1 2 π ,
4.19.6 cot z = 1 z z 3 z 3 45 2 945 z 5 ( 1 ) n 1 2 2 n B 2 n ( 2 n ) ! z 2 n 1 , 0 < | z | < π ,
8: 26.14 Permutations: Order Notation
As an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … The Eulerian number, denoted n k , is the number of permutations in 𝔖 n with exactly k descents. …The Eulerian number n k is equal to the number of permutations in 𝔖 n with exactly k excedances. …
§26.14(iii) Identities
9: 26.7 Set Partitions: Bell Numbers
§26.7 Set Partitions: Bell Numbers
§26.7(i) Definitions
§26.7(ii) Generating Function
§26.7(iii) Recurrence Relation
§26.7(iv) Asymptotic Approximation
10: 26.8 Set Partitions: Stirling Numbers
§26.8 Set Partitions: Stirling Numbers
§26.8(i) Definitions
§26.8(v) Identities
§26.8(vi) Relations to Bernoulli Numbers