About the Project

[Site: hs-geeks.com/snapfr/],Pirater un compte Snapchat,piratage Snapchat,pirater Snapchat,comment pirater un compte Snapchat,comment pirater un compte Snapchat,comment pirater Snapchat,comment pirater le Snapchat de quelqu'un,comment pirater un Snapchat,comment pirater le Snapchat de quelqu'un,pirater Snapchat messenger,comment signaler et pirater Snapchat

AdvancedHelp

Did you mean [Site: hs-gcn.com/napierian/],greater un compte bartschat,piraniane bartschat,greater bartschat,comment greater un compte bartschat,comment greater un compte bartschat,comment greater bartschat,comment greater le bartschat de quelqu'un,comment greater un bartschat,comment greater le bartschat de quelqu'un,greater bartschat messenger,comment signaler et greater bartschat ?

(0.012 seconds)

1—10 of 910 matching pages

1: Customize DLMF
…You can customize the appearance and functionality of the DLMF site using these selections. …
2: Bibliography T
  • T. Takemasa, T. Tamura, and H. H. Wolter (1979) Coulomb functions with complex angular momenta. Comput. Phys. Comm. 17 (4), pp. 351–355.
  • P. G. Todorov (1978) Une nouvelle représentation explicite des nombres d’Euler. C. R. Acad. Sci. Paris Sér. A-B 286 (19), pp. A807–A809.
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • M. J. Tretter and G. W. Walster (1980) Further comments on the computation of modified Bessel function ratios. Math. Comp. 35 (151), pp. 937–939.
  • F. G. Tricomi (1949) Sul comportamento asintotico dell’ n -esimo polinomio di Laguerre nell’intorno dell’ascissa 4 n . Comment. Math. Helv. 22, pp. 150–167.
  • 3: Bibliography K
  • A. A. Karatsuba and S. M. Voronin (1992) The Riemann Zeta-Function. de Gruyter Expositions in Mathematics, Vol. 5, Walter de Gruyter & Co., Berlin.
  • D. A. Kofke (2004) Comment on “The incomplete beta function law for parallel tempering sampling of classical canonical systems” [J. Chem. Phys. 120, 4119 (2004)]. J. Chem. Phys. 121 (2), pp. 1167.
  • K. S. Kölbig (1981) A Program for Computing the Conical Functions of the First Kind P 1 / 2 + i τ m ( x ) for m = 0 and m = 1 . Comput. Phys. Comm. 23 (1), pp. 51–61.
  • S. Kowalevski (1889) Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Math. 12 (1), pp. 177–232 (French).
  • M. D. Kruskal (1974) The Korteweg-de Vries Equation and Related Evolution Equations. In Nonlinear Wave Motion (Proc. AMS-SIAM Summer Sem., Clarkson Coll. Tech., Potsdam, N.Y., 1972), A. C. Newell (Ed.), Lectures in Appl. Math., Vol. 15, pp. 61–83.
  • 4: Bibliography S
  • L. Shen (1998) On an identity of Ramanujan based on the hypergeometric series F 1 2 ( 1 3 , 2 3 ; 1 2 ; x ) . J. Number Theory 69 (2), pp. 125–134.
  • R. Sips (1967) Répartition du courant alternatif dans un conducteur cylindrique de section elliptique. Acad. Roy. Belg. Bull. Cl. Sci. (5) 53 (8), pp. 861–878.
  • I. Sh. Slavutskiĭ (1999) About von Staudt congruences for Bernoulli numbers. Comment. Math. Univ. St. Paul. 48 (2), pp. 137–144.
  • D. Slepian (1983) Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25 (3), pp. 379–393.
  • O. Szász (1950) On the relative extrema of ultraspherical polynomials. Boll. Un. Mat. Ital. (3) 5, pp. 125–127.
  • 5: How to Cite
    Citations from other electronic media (the web, email, …), should, of course, use the appropriate means to give the site URL (https://dlmf.nist.gov/), or specific Permalinks. … For convenience, the permalink can be found in the pop-up ‘Info box’ associated with each item in the site.
    6: DLMF Project News
    error generating summary
    7: 6 Exponential, Logarithmic, Sine, and
    Cosine Integrals
    8: 7 Error Functions, Dawson’s and Fresnel Integrals
    9: 7.24 Approximations
  • Cody (1968) gives minimax rational approximations for the Fresnel integrals (maximum relative precision 19S); for a Fortran algorithm and comments see Snyder (1993).

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • Luke (1969b, pp. 323–324) covers 1 2 π erf x and e x 2 F ( x ) for 3 x 3 (the Chebyshev coefficients are given to 20D); π x e x 2 erfc x and 2 x F ( x ) for x 3 (the Chebyshev coefficients are given to 20D and 15D, respectively). Coefficients for the Fresnel integrals are given on pp. 328–330 (20D).

  • Schonfelder (1978) gives coefficients of Chebyshev expansions for x 1 erf x on 0 x 2 , for x e x 2 erfc x on [ 2 , ) , and for e x 2 erfc x on [ 0 , ) (30D).

  • 10: 27 Functions of Number Theory