About the Project

[Site: hs-geeks.com/snapfr/],Comment Hack un Snapchat gratuitement et facilement, pirater un compte Snapchat a distance, Comment Hack compte Snapchat sans code, Comment Hack un compte Snapchat, Comment Hack un compte Snapchat avec du phishing, Comment Hack un compte Snapchat avec pc 2020, Comment Hack un compte Snapchat avec mohmal, Comment Hack un compte Snapchat gratuit

AdvancedHelp

Did you mean [Site: hs-gcn.com/napierian/],Comment jack un bartschat grateement et facilement, porter un compte bartschat a distance, Comment jack compte bartschat sans code, Comment jack un compte bartschat, Comment jack un compte bartschat aec du philosophiing, Comment jack un compte bartschat aec pc 2020, Comment jack un compte bartschat aec mohammad, Comment jack un compte bartschat gratuit ?

(0.005 seconds)

1—10 of 1015 matching pages

1: Bibliography T
  • T. Takemasa, T. Tamura, and H. H. Wolter (1979) Coulomb functions with complex angular momenta. Comput. Phys. Comm. 17 (4), pp. 351–355.
  • P. G. Todorov (1978) Une nouvelle représentation explicite des nombres d’Euler. C. R. Acad. Sci. Paris Sér. A-B 286 (19), pp. A807–A809.
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • M. J. Tretter and G. W. Walster (1980) Further comments on the computation of modified Bessel function ratios. Math. Comp. 35 (151), pp. 937–939.
  • F. G. Tricomi (1949) Sul comportamento asintotico dell’ n -esimo polinomio di Laguerre nell’intorno dell’ascissa 4 n . Comment. Math. Helv. 22, pp. 150–167.
  • 2: 6 Exponential, Logarithmic, Sine, and
    Cosine Integrals
    3: 7 Error Functions, Dawson’s and Fresnel Integrals
    4: Bibliography K
  • N. P. Kirk, J. N. L. Connor, and C. A. Hobbs (2000) An adaptive contour code for the numerical evaluation of the oscillatory cuspoid canonical integrals and their derivatives. Computer Physics Comm. 132 (1-2), pp. 142–165.
  • D. A. Kofke (2004) Comment on “The incomplete beta function law for parallel tempering sampling of classical canonical systems” [J. Chem. Phys. 120, 4119 (2004)]. J. Chem. Phys. 121 (2), pp. 1167.
  • K. S. Kölbig (1981) A Program for Computing the Conical Functions of the First Kind P 1 / 2 + i τ m ( x ) for m = 0 and m = 1 . Comput. Phys. Comm. 23 (1), pp. 51–61.
  • S. Kowalevski (1889) Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Math. 12 (1), pp. 177–232 (French).
  • P. Kravanja, O. Ragos, M. N. Vrahatis, and F. A. Zafiropoulos (1998) ZEBEC: A mathematical software package for computing simple zeros of Bessel functions of real order and complex argument. Comput. Phys. Comm. 113 (2-3), pp. 220–238.
  • 5: Bibliography S
  • R. Sips (1967) Répartition du courant alternatif dans un conducteur cylindrique de section elliptique. Acad. Roy. Belg. Bull. Cl. Sci. (5) 53 (8), pp. 861–878.
  • I. Sh. Slavutskiĭ (1999) About von Staudt congruences for Bernoulli numbers. Comment. Math. Univ. St. Paul. 48 (2), pp. 137–144.
  • D. Slepian (1983) Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25 (3), pp. 379–393.
  • P. Spellucci and P. Pulay (1975) Effective calculation of the incomplete gamma function for parameter values α = ( 2 n + 1 ) / 2 , n = 0 , , 5 . Angew. Informatik 17, pp. 30–32.
  • O. Szász (1950) On the relative extrema of ultraspherical polynomials. Boll. Un. Mat. Ital. (3) 5, pp. 125–127.
  • 6: 7.24 Approximations
  • Cody (1968) gives minimax rational approximations for the Fresnel integrals (maximum relative precision 19S); for a Fortran algorithm and comments see Snyder (1993).

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • Luke (1969b, pp. 323–324) covers 1 2 π erf x and e x 2 F ( x ) for 3 x 3 (the Chebyshev coefficients are given to 20D); π x e x 2 erfc x and 2 x F ( x ) for x 3 (the Chebyshev coefficients are given to 20D and 15D, respectively). Coefficients for the Fresnel integrals are given on pp. 328–330 (20D).

  • Luke (1969b, vol. 2, pp. 422–435) gives main diagonal Padé approximations for F ( z ) , erf z , erfc z , C ( z ) , and S ( z ) ; approximate errors are given for a selection of z -values.

  • 7: 14.32 Methods of Computation
    Essentially the same comments that are made in §15.19 concerning the computation of hypergeometric functions apply to the functions described in the present chapter. In particular, for small or moderate values of the parameters μ and ν the power-series expansions of the various hypergeometric function representations given in §§14.3(i)14.3(iii), 14.19(ii), and 14.20(i) can be selected in such a way that convergence is stable, and reasonably rapid, especially when the argument of the functions is real. In other cases recurrence relations (§14.10) provide a powerful method when applied in a stable direction (§3.6); see Olver and Smith (1983) and Gautschi (1967). …
  • Quadrature (§3.5) of the integral representations given in §§14.12, 14.19(iii), 14.20(iv), and 14.25; see Segura and Gil (1999) and Gil et al. (2000).

  • For the computation of conical functions see Gil et al. (2009, 2012), and Dunster (2014).

  • 8: 27 Functions of Number Theory
    9: 7.22 Methods of Computation
    The methods available for computing the main functions in this chapter are analogous to those described in §§6.18(i)6.18(iv) for the exponential integral and sine and cosine integrals, and similar comments apply. Additional references are Matta and Reichel (1971) for the application of the trapezoidal rule, for example, to the first of (7.7.2), and Gautschi (1970) and Cuyt et al. (2008) for continued fractions. … For a comprehensive survey of computational methods for the functions treated in this chapter, see van der Laan and Temme (1984, Ch. V).
    10: DLMF Project News
    error generating summary