About the Project

%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E7%BD%91%E7%AB%99,%E3%80%90%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%9C%B0%E5%9D%80%E2%88%B622kk33.com%E3%80%91%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E8%AE%BA%E5%9D%9B,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E8%AE%BA%E5%9D%9B,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E8%B5%84%E8%AE%AF,%E7%9C%9F%E4%BA%BA%E5%8D%9A%E5%BD%A9%E6%B8%B8%E6%88%8F,%E3%80%90%E5%8D%9A%E5%BD%A9%E7%BD%91%E5%9D%80%E2%88%B622kk33.com%E3%80%91%E7%BD%91%E5%9D%80Zg0ngCkEEkEAkfn

AdvancedHelp

Did you mean %E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E7%BD%91%E7%AB%99,%E3%80%90%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%9C%B0%E5%9D%80%E2%88%gcn.com%E3%80%91%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E8%AE%BA%E5%9D%9B,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E8%AE%BA%E5%9D%9B,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E8%B5%84%E8%AE%AF,%E7%9C%9F%E4%BA%BA%E5%8D%9A%E5%BD%A9%E6%B8%B8%E6%88%8F,%E3%80%90%E5%8D%9A%E5%BD%A9%E7%BD%91%E5%9D%80%E2%88%gcn.com%E3%80%91%E7%BD%91%E5%9D%80Zg0ngCkEEkEAkfn ?

(0.068 seconds)

1—10 of 582 matching pages

1: 34.6 Definition: 9 ⁒ j Symbol
§34.6 Definition: 9 ⁒ j Symbol
β–ΊThe 9 ⁒ j symbol may be defined either in terms of 3 ⁒ j symbols or equivalently in terms of 6 ⁒ j symbols: β–Ί
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  ⁒ m r ⁒ s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ⁒ ( j 21 j 22 j 23 m 21 m 22 m 23 ) ⁒ ( j 31 j 32 j 33 m 31 m 32 m 33 ) ⁒ ( j 11 j 21 j 31 m 11 m 21 m 31 ) ⁒ ( j 12 j 22 j 32 m 12 m 22 m 32 ) ⁒ ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
β–Ί
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 ⁒ j ⁒ ( 2 ⁒ j + 1 ) ⁒ { j 11 j 21 j 31 j 32 j 33 j } ⁒ { j 12 j 22 j 32 j 21 j j 23 } ⁒ { j 13 j 23 j 33 j j 11 j 12 } .
β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: Bibliography H
β–Ί
  • P. I. HadΕΎi (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Ε tiince RSS Moldoven. 1976 (1), pp. 8084, 96 (Russian).
  • β–Ί
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • β–Ί
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • β–Ί
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • β–Ί
  • T. E. Hull and A. Abrham (1986) Variable precision exponential function. ACM Trans. Math. Software 12 (2), pp. 79–91.
  • 3: 27.2 Functions
    β–Ί
    27.2.9 d ⁑ ( n ) = d | n 1
    β–ΊIt is the special case k = 2 of the function d k ⁑ ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that Οƒ 0 ⁑ ( n ) = d ⁑ ( n ) . … β–ΊTable 27.2.2 tabulates the Euler totient function Ο• ⁑ ( n ) , the divisor function d ⁑ ( n ) ( = Οƒ 0 ⁑ ( n ) ), and the sum of the divisors Οƒ ⁑ ( n ) ( = Οƒ 1 ⁑ ( n ) ), for n = 1 ⁒ ( 1 ) ⁒ 52 . … β–Ί
    Table 27.2.2: Functions related to division.
    β–Ί β–Ίβ–Ίβ–Ί
    n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n )
    10 4 4 18 23 22 2 24 36 12 9 91 49 42 3 57
    β–Ί
    4: 26.6 Other Lattice Path Numbers
    β–Ί
    Delannoy Number D ⁑ ( m , n )
    β–Ί D ⁑ ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . … β–Ί
    Table 26.6.1: Delannoy numbers D ⁑ ( m , n ) .
    β–Ί β–Ίβ–Ί
    m n
    β–Ί
    β–Ί
    26.6.4 r ⁑ ( n ) = D ⁑ ( n , n ) D ⁑ ( n + 1 , n 1 ) , n 1 .
    β–Ί
    26.6.10 D ⁑ ( m , n ) = D ⁑ ( m , n 1 ) + D ⁑ ( m 1 , n ) + D ⁑ ( m 1 , n 1 ) , m , n 1 ,
    5: Bibliography D
    β–Ί
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • β–Ί
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • β–Ί
  • G. V. Dunne and K. Rao (2000) Lamé instantons. J. High Energy Phys. 2000 (1), pp. Paper 19, 8.
  • β–Ί
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • β–Ί
  • L. Durand (1978) Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. SIAM J. Math. Anal. 9 (1), pp. 76–86.
  • 6: Bibliography
    β–Ί
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 9199.
  • β–Ί
  • G. E. Andrews (1966a) On basic hypergeometric series, mock theta functions, and partitions. II. Quart. J. Math. Oxford Ser. (2) 17, pp. 132–143.
  • β–Ί
  • G. E. Andrews (2000) Umbral calculus, Bailey chains, and pentagonal number theorems. J. Combin. Theory Ser. A 91 (1-2), pp. 464–475.
  • β–Ί
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • β–Ί
  • F. M. Arscott (1959) A new treatment of the ellipsoidal wave equation. Proc. London Math. Soc. (3) 9, pp. 21–50.
  • 7: 34.12 Physical Applications
    §34.12 Physical Applications
    β–ΊThe angular momentum coupling coefficients ( 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols) are essential in the fields of nuclear, atomic, and molecular physics. … 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols are also found in multipole expansions of solutions of the Laplace and Helmholtz equations; see Carlson and Rushbrooke (1950) and Judd (1976).
    8: 9 Airy and Related Functions
    Chapter 9 Airy and Related Functions
    9: 34.14 Tables
    §34.14 Tables
    β–ΊTables of exact values of the squares of the 3 ⁒ j and 6 ⁒ j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols on pp. … β–ΊSome selected 9 ⁒ j symbols are also given. … 16-17; for 9 ⁒ j symbols on p. … β–Ί 310–332, and for the 9 ⁒ j symbols on pp. …
    10: 24.2 Definitions and Generating Functions
    β–Ί
    24.2.1 t e t 1 = n = 0 B n ⁒ t n n ! , | t | < 2 ⁒ Ο€ .
    β–Ί
    B 2 ⁒ n + 1 = 0 ,
    β–Ί
    ( 1 ) n + 1 ⁒ B 2 ⁒ n > 0 , n = 1 , 2 , .
    β–Ί
    Table 24.2.3: Bernoulli numbers B n = N / D .
    β–Ί β–Ίβ–Ί
    n N D B n
    β–Ί
    β–Ί
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ⁑ ( x ) = k = 0 n e n , k ⁒ x k .
    β–Ί β–Ίβ–Ίβ–Ί
    k
    14 0 38227 0 62881 0 31031 0 7293 0 1001 0 91 0 7 1
    β–Ί