About the Project

%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD,%E7%8E%B0%E9%87%91%E6%A3%8B%E7%89%8C%E5%B9%B3%E5%8F%B0,%E7%9C%9F%E4%BA%BA%E6%A3%8B%E7%89%8C%E5%AE%98%E7%BD%91,%E3%80%90%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80%E2%88%B6789yule.com%E3%80%91%E7%9C%9F%E4%BA%BA%E7%9C%9F%E9%92%B1%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F,%E7%BD%91%E4%B8%8A%E6%A3%8B%E7%89%8C%E8%AE%BA%E5%9D%9B,%E7%BD%91%E7%BB%9C%E5%8D%9A%E5%BD%A9%E8%AE%BA%E5%9D%9B,%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E8%B5%8C%E5%8D%9A%E7%BD%91%E7%AB%99,%E3%80%90%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E7%BD%91%E7%AB%99%E2%88%B6789yule.com%E3%80%91%E7%BD%91%E5%9D%80ZDg0nAkCfB0BknED

AdvancedHelp

Did you mean %E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD,%E7%8E%B0%E9%87%91%E6%A3%8B%E7%89%8C%E5%B9%B3%E5%8F%B0,%E7%9C%9F%E4%BA%BA%E6%A3%8B%E7%89%8C%E5%AE%98%E7%BD%91,%E3%80%90%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80%E2%88%caniuse.com%E3%80%91%E7%9C%9F%E4%BA%BA%E7%9C%9F%E9%92%B1%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F,%E7%BD%91%E4%B8%8A%E6%A3%8B%E7%89%8C%E8%AE%BA%E5%9D%9B,%E7%BD%91%E7%BB%9C%E5%8D%9A%E5%BD%A9%E8%AE%BA%E5%9D%9B,%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E8%B5%8C%E5%8D%9A%E7%BD%91%E7%AB%99,%E3%80%90%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E7%BD%91%E7%AB%99%E2%88%caniuse.com%E3%80%91%E7%BD%91%E5%9D%80ZDg0nAkCfB0BknED ?

(0.097 seconds)

1—10 of 616 matching pages

1: 34.6 Definition: 9 j Symbol
§34.6 Definition: 9 j Symbol
The 9 j symbol may be defined either in terms of 3 j symbols or equivalently in terms of 6 j symbols:
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
The 9 j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: 19.2 Definitions
The principal values of K ( k ) and E ( k ) are even functions. …
§19.2(iv) A Related Function: R C ( x , y )
Formulas involving Π ( ϕ , α 2 , k ) that are customarily different for circular cases, ordinary hyperbolic cases, and (hyperbolic) Cauchy principal values, are united in a single formula by using R C ( x , y ) . … When x and y are positive, R C ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y : …For the special cases of R C ( x , x ) and R C ( 0 , y ) see (19.6.15). …
3: Bibliography H
  • E. Hairer, S. P. Nørsett, and G. Wanner (1993) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, Berlin.
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • K. Horata (1991) On congruences involving Bernoulli numbers and irregular primes. II. Rep. Fac. Sci. Technol. Meijo Univ. 31, pp. 1–8.
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • 4: 3.4 Differentiation
    The B k n are the differentiated Lagrangian interpolation coefficients: …where A k n is as in (3.3.10). …
    B 2 7 = 1 240 ( 72 + 36 t 267 t 2 80 t 3 + 90 t 4 + 12 t 5 7 t 6 ) ,
    where C is a simple closed contour described in the positive rotational sense such that C and its interior lie in the domain of analyticity of f , and x 0 is interior to C . Taking C to be a circle of radius r centered at x 0 , we obtain …
    5: 24.2 Definitions and Generating Functions
    B 2 n + 1 = 0 ,
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    8 1 30 3.33333 3333 ×10⁻²
    Table 24.2.4: Euler numbers E n .
    n E n
    8 1385
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    6: 27.2 Functions
    27.2.9 d ( n ) = d | n 1
    It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that σ 0 ( n ) = d ( n ) . … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    1 1 1 1 14 6 4 24 27 18 4 40 40 16 8 90
    7: 26.6 Other Lattice Path Numbers
    Delannoy Number D ( m , n )
    D ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . …
    Table 26.6.1: Delannoy numbers D ( m , n ) .
    m n
    0 1 2 3 4 5 6 7 8 9 10
    Table 26.6.2: Motzkin numbers M ( n ) .
    n M ( n ) n M ( n ) n M ( n ) n M ( n ) n M ( n )
    0 1 4 9 8 323 12 15511 16 8 53467
    Table 26.6.4: Schröder numbers r ( n ) .
    n r ( n ) n r ( n ) n r ( n ) n r ( n ) n r ( n )
    0 1 4 90 8 41586 12 272 97738 16 2 09271 56706
    8: 8 Incomplete Gamma and Related
    Functions
    Chapter 8 Incomplete Gamma and Related Functions
    9: 1.12 Continued Fractions
    C n is called the n th approximant or convergent to C . … Define … A contraction of a continued fraction C is a continued fraction C whose convergents { C n } form a subsequence of the convergents { C n } of C . Conversely, C is called an extension of C . … Then the convergents C n satisfy …
    10: Bibliography
  • A. Abramov (1960) Tables of ln Γ ( z ) for Complex Argument. Pergamon Press, New York.
  • G. B. Airy (1849) Supplement to a paper “On the intensity of light in the neighbourhood of a caustic”. Trans. Camb. Phil. Soc. 8, pp. 595–599.
  • F. Alhargan and S. Judah (1992) Frequency response characteristics of the multiport planar elliptic patch. IEEE Trans. Microwave Theory Tech. 40 (8), pp. 1726–1730.
  • W. L. Anderson (1982) Algorithm 588. Fast Hankel transforms using related and lagged convolutions. ACM Trans. Math. Software 8 (4), pp. 369–370.
  • D. Atkinson and P. W. Johnson (1988) Chiral-symmetry breaking in QCD. I. The infrared domain. Phys. Rev. D (3) 37 (8), pp. 2290–2295.