About the Project

%E6%97%B6%E6%97%B6%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E6%97%B6%E6%97%B6%E5%BD%A9%E7%8E%A9%E6%B3%95,%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E6%8A%80%E5%B7%A7,%E6%97%B6%E6%97%B6%E5%BD%A9%E8%A7%84%E5%88%99,%E3%80%90%E6%97%B6%E6%97%B6%E5%BD%A9%E7%BD%91%E5%9D%80%E2%88%B622kk55.com%E3%80%91%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%A8%E8%8D%90,%E6%97%B6%E6%97%B6%E5%BD%A9%E5%AE%98%E7%BD%91,%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E7%BD%91%E7%AB%99,%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E8%A7%84%E5%88%99,%E6%97%B6%E6%97%B6%E5%BD%A9%E5%BC%80%E5%A5%96%E7%BB%93%E6%9E%9C,%E6%97%B6%E6%97%B6%E5%BD%A9app%E4%B8%8B%E8%BD%BD,%E3%80%90%E6%97%B6%E6%97%B6%E5%BD%A9%E5%B9%B3%E5%8F%B0%E2%88%B622kk55.com%E3%80%91

AdvancedHelp

Did you mean %E6%97%B6%E6%97%B6%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E6%97%B6%E6%97%B6%E5%BD%A9%E7%8E%A9%E6%B3%95,%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E6%8A%80%E5%B7%A7,%E6%97%B6%E6%97%B6%E5%BD%A9%E8%A7%84%E5%88%99,%E3%80%90%E6%97%B6%E6%97%B6%E5%BD%A9%E7%BD%91%E5%9D%80%E2%88%gcn.com%E3%80%91%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%A8%E8%8D%90,%E6%97%B6%E6%97%B6%E5%BD%A9%E5%AE%98%E7%BD%91,%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E7%BD%91%E7%AB%99,%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E8%A7%84%E5%88%99,%E6%97%B6%E6%97%B6%E5%BD%A9%E5%BC%80%E5%A5%96%E7%BB%93%E6%9E%9C,%E6%97%B6%E6%97%B6%E5%BD%papp%E4%B8%8B%E8%BD%BD,%E3%80%90%E6%97%B6%E6%97%B6%E5%BD%A9%E5%B9%B3%E5%8F%B0%E2%88%gcn.com%E3%80%91 ?

(0.062 seconds)

1—10 of 622 matching pages

1: 34.13 Methods of Computation
β–ΊMethods of computation for 3 ⁒ j and 6 ⁒ j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 9799); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). β–ΊFor 9 ⁒ j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). …
2: Bibliography H
β–Ί
  • P. I. HadΕΎi (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 8084, 95 (Russian).
  • β–Ί
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • β–Ί
  • B. Hayes (2009) The higher arithmetic. American Scientist 97, pp. 364–368.
  • β–Ί
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • β–Ί
  • K. Horata (1991) On congruences involving Bernoulli numbers and irregular primes. II. Rep. Fac. Sci. Technol. Meijo Univ. 31, pp. 1–8.
  • 3: 27.2 Functions
    β–Ί
    27.2.9 d ⁑ ( n ) = d | n 1
    β–ΊIt is the special case k = 2 of the function d k ⁑ ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that Οƒ 0 ⁑ ( n ) = d ⁑ ( n ) . … β–ΊTable 27.2.2 tabulates the Euler totient function Ο• ⁑ ( n ) , the divisor function d ⁑ ( n ) ( = Οƒ 0 ⁑ ( n ) ), and the sum of the divisors Οƒ ⁑ ( n ) ( = Οƒ 1 ⁑ ( n ) ), for n = 1 ⁒ ( 1 ) ⁒ 52 . β–Ί
    Table 27.2.1: Primes.
    β–Ί β–Ίβ–Ίβ–Ί
    n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
    5 11 47 97 149 197 257 313 379 439 499
    β–Ί
    4: Bibliography
    β–Ί
  • A. Abramov (1960) Tables of ln ⁑ Ξ“ ⁒ ( z ) for Complex Argument. Pergamon Press, New York.
  • β–Ί
  • G. B. Airy (1849) Supplement to a paper “On the intensity of light in the neighbourhood of a caustic”. Trans. Camb. Phil. Soc. 8, pp. 595–599.
  • β–Ί
  • F. Alhargan and S. Judah (1992) Frequency response characteristics of the multiport planar elliptic patch. IEEE Trans. Microwave Theory Tech. 40 (8), pp. 1726–1730.
  • β–Ί
  • W. L. Anderson (1982) Algorithm 588. Fast Hankel transforms using related and lagged convolutions. ACM Trans. Math. Software 8 (4), pp. 369–370.
  • β–Ί
  • G. E. Andrews (1966b) q -identities of Auluck, Carlitz, and Rogers. Duke Math. J. 33 (3), pp. 575–581.
  • 5: 26.10 Integer Partitions: Other Restrictions
    β–Ί p ⁑ ( π’Ÿ , n ) denotes the number of partitions of n into distinct parts. p m ⁑ ( π’Ÿ , n ) denotes the number of partitions of n into at most m distinct parts. p ⁑ ( π’Ÿ ⁒ k , n ) denotes the number of partitions of n into parts with difference at least k . … β–ΊNote that p ⁑ ( π’Ÿ ⁒ 3 , n ) p ⁑ ( π’Ÿ ⁒ 3 , n ) , with strict inequality for n 9 . It is known that for k > 3 , p ⁑ ( π’Ÿ ⁒ k , n ) p ⁑ ( A 1 , k + 3 , n ) , with strict inequality for n sufficiently large, provided that k = 2 m 1 , m = 3 , 4 , 5 , or k 32 ; see Yee (2004). …
    6: 34.1 Special Notation
    β–Ί β–Ίβ–Ί
    2 ⁒ j 1 , 2 ⁒ j 2 , 2 ⁒ j 3 , 2 ⁒ l 1 , 2 ⁒ l 2 , 2 ⁒ l 3 nonnegative integers.
    β–ΊThe main functions treated in this chapter are the Wigner 3 ⁒ j , 6 ⁒ j , 9 ⁒ j symbols, respectively, … β–ΊFor other notations for 3 ⁒ j , 6 ⁒ j , 9 ⁒ j symbols, see Edmonds (1974, pp. 52, 97, 104–105) and Varshalovich et al. (1988, §§8.11, 9.10, 10.10).
    7: Bibliography B
    β–Ί
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • β–Ί
  • M. V. Berry (1975) Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces. J. Phys. A 8 (4), pp. 566–584.
  • β–Ί
  • L. C. Biedenharn, R. L. Gluckstern, M. H. Hull, and G. Breit (1955) Coulomb functions for large charges and small velocities. Phys. Rev. (2) 97 (2), pp. 542–554.
  • β–Ί
  • G. Blanch (1966) Numerical aspects of Mathieu eigenvalues. Rend. Circ. Mat. Palermo (2) 15, pp. 51–97.
  • β–Ί
  • P. S. Bullen (1998) A Dictionary of Inequalities. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 97, Longman, Harlow.
  • 8: 15.7 Continued Fractions
    β–Ί
    15.7.1 𝐅 ⁑ ( a , b ; c ; z ) 𝐅 ⁑ ( a , b + 1 ; c + 1 ; z ) = t 0 u 1 ⁒ z t 1 u 2 ⁒ z t 2 u 3 ⁒ z t 3 β‹― ,
    β–Ί β–Ί
    9: 21.9 Integrable Equations
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 21.9.1: Two-dimensional periodic waves in a shallow water wave tank, taken from Hammack et al. (1995, p. 97) by permission of Cambridge University Press. … Magnify
    10: Bibliography K
    β–Ί
  • N. D. Kazarinoff (1988) Special functions and the Bieberbach conjecture. Amer. Math. Monthly 95 (8), pp. 689–696.
  • β–Ί
  • N. Koblitz (1993) Introduction to Elliptic Curves and Modular Forms. 2nd edition, Graduate Texts in Mathematics, Vol. 97, Springer-Verlag, New York.
  • β–Ί
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • β–Ί
  • B. G. Korenev (2002) Bessel Functions and their Applications. Analytical Methods and Special Functions, Vol. 8, Taylor & Francis Ltd., London-New York.
  • β–Ί
  • M. D. Kruskal and P. A. Clarkson (1992) The Painlevé-Kowalevski and poly-Painlevé tests for integrability. Stud. Appl. Math. 86 (2), pp. 87–165.