About the Project

%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E5%A4%A7%E5%85%A8,%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%92%E5%90%8D,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E3%80%90%E5%8D%9A%E5%BD%A9%E7%BD%91%E5%9D%80%E2%88%B6789yule.com%E3%80%91%E5%85%A8%E7%90%83%E6%9C%80%E5%A4%A7%E7%9A%84%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E6%AD%A3%E8%A7%84%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%A8%E8%8D%90,%E4%BD%93%E8%82%B2%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E4%BD%93%E8%82%B2%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%92%E5%90%8D%E3%80%90%E7%9C%9F%E4%BA%BA%E5%8D%9A%E5%BD%A9%E5%A4%A7%E5%8E%85%E2%88%B6789yule.com%E3%80%91

AdvancedHelp

Did you mean %E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E5%A4%A7%E5%85%A8,%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%92%E5%90%8D,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E3%80%90%E5%8D%9A%E5%BD%A9%E7%BD%91%E5%9D%80%E2%88%caniuse.com%E3%80%91%E5%85%A8%E7%90%83%E6%9C%80%E5%A4%A7%E7%9A%84%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E6%AD%A3%E8%A7%84%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%A8%E8%8D%90,%E4%BD%93%E8%82%B2%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E4%BD%93%E8%82%B2%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%92%E5%90%8D%E3%80%90%E7%9C%9F%E4%BA%BA%E5%8D%9A%E5%BD%A9%E5%A4%A7%E5%8E%85%E2%88%caniuse.com%E3%80%91 ?

(0.085 seconds)

1—10 of 661 matching pages

1: 34.6 Definition: 9 ⁒ j Symbol
§34.6 Definition: 9 ⁒ j Symbol
β–ΊThe 9 ⁒ j symbol may be defined either in terms of 3 ⁒ j symbols or equivalently in terms of 6 ⁒ j symbols: β–Ί
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  ⁒ m r ⁒ s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ⁒ ( j 21 j 22 j 23 m 21 m 22 m 23 ) ⁒ ( j 31 j 32 j 33 m 31 m 32 m 33 ) ⁒ ( j 11 j 21 j 31 m 11 m 21 m 31 ) ⁒ ( j 12 j 22 j 32 m 12 m 22 m 32 ) ⁒ ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
β–Ί
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 ⁒ j ⁒ ( 2 ⁒ j + 1 ) ⁒ { j 11 j 21 j 31 j 32 j 33 j } ⁒ { j 12 j 22 j 32 j 21 j j 23 } ⁒ { j 13 j 23 j 33 j j 11 j 12 } .
β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: 26.10 Integer Partitions: Other Restrictions
β–Ί p ⁑ ( π’Ÿ , n ) denotes the number of partitions of n into distinct parts. p m ⁑ ( π’Ÿ , n ) denotes the number of partitions of n into at most m distinct parts. p ⁑ ( π’Ÿ ⁒ k , n ) denotes the number of partitions of n into parts with difference at least k . … β–ΊNote that p ⁑ ( π’Ÿ ⁒ 3 , n ) p ⁑ ( π’Ÿ ⁒ 3 , n ) , with strict inequality for n 9 . It is known that for k > 3 , p ⁑ ( π’Ÿ ⁒ k , n ) p ⁑ ( A 1 , k + 3 , n ) , with strict inequality for n sufficiently large, provided that k = 2 m 1 , m = 3 , 4 , 5 , or k 32 ; see Yee (2004). …
3: 26.6 Other Lattice Path Numbers
β–Ί
Delannoy Number D ⁑ ( m , n )
β–Ί D ⁑ ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . … β–Ί
Table 26.6.1: Delannoy numbers D ⁑ ( m , n ) .
β–Ί β–Ίβ–Ί
m n
β–Ί
β–Ί
Table 26.6.2: Motzkin numbers M ⁑ ( n ) .
β–Ί β–Ίβ–Ίβ–Ί
n M ⁑ ( n ) n M ⁑ ( n ) n M ⁑ ( n ) n M ⁑ ( n ) n M ⁑ ( n )
0 1 4 9 8 323 12 15511 16 8 53467
β–Ί
β–Ί
26.6.10 D ⁑ ( m , n ) = D ⁑ ( m , n 1 ) + D ⁑ ( m 1 , n ) + D ⁑ ( m 1 , n 1 ) , m , n 1 ,
4: 1.11 Zeros of Polynomials
β–ΊSet z = w 1 3 ⁒ a to reduce f ⁑ ( z ) = z 3 + a ⁒ z 2 + b ⁒ z + c to g ⁑ ( w ) = w 3 + p ⁒ w + q , with p = ( 3 ⁒ b a 2 ) / 3 , q = ( 2 ⁒ a 3 9 ⁒ a ⁒ b + 27 ⁒ c ) / 27 . … β–Ί f ⁑ ( z ) = z 3 6 ⁒ z 2 + 6 ⁒ z 2 , g ⁑ ( w ) = w 3 6 ⁒ w 6 , A = 3 ⁒ 4 3 , B = 3 ⁒ 2 3 . … β–ΊResolvent cubic is z 3 + 12 ⁒ z 2 + 20 ⁒ z + 9 = 0 with roots ΞΈ 1 = 1 , ΞΈ 2 = 1 2 ⁒ ( 11 + 85 ) , ΞΈ 3 = 1 2 ⁒ ( 11 85 ) , and ΞΈ 1 = 1 , ΞΈ 2 = 1 2 ⁒ ( 17 + 5 ) , ΞΈ 3 = 1 2 ⁒ ( 17 5 ) . … β–ΊLet … β–ΊThen f ⁑ ( z ) , with a n 0 , is stable iff a 0 0 ; D 2 ⁒ k > 0 , k = 1 , , 1 2 ⁒ n ; sign ⁑ D 2 ⁒ k + 1 = sign ⁑ a 0 , k = 0 , 1 , , 1 2 ⁒ n 1 2 .
5: 27.2 Functions
β–Ί
27.2.9 d ⁑ ( n ) = d | n 1
β–ΊIt is the special case k = 2 of the function d k ⁑ ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that Οƒ 0 ⁑ ( n ) = d ⁑ ( n ) . … β–ΊTable 27.2.2 tabulates the Euler totient function Ο• ⁑ ( n ) , the divisor function d ⁑ ( n ) ( = Οƒ 0 ⁑ ( n ) ), and the sum of the divisors Οƒ ⁑ ( n ) ( = Οƒ 1 ⁑ ( n ) ), for n = 1 ⁒ ( 1 ) ⁒ 52 . … β–Ί
Table 27.2.2: Functions related to division.
β–Ί β–Ίβ–Ίβ–Ί
n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n )
11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
β–Ί
6: Bibliography H
β–Ί
  • E. Hairer, S. P. Nørsett, and G. Wanner (1993) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, Berlin.
  • β–Ί
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • β–Ί
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • β–Ί
  • K. Horata (1991) On congruences involving Bernoulli numbers and irregular primes. II. Rep. Fac. Sci. Technol. Meijo Univ. 31, pp. 1–8.
  • β–Ί
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • 7: 3.3 Interpolation
    β–ΊIf f is analytic in a simply-connected domain D 1.13(i)), then for z D , …where C is a simple closed contour in D described in the positive rotational sense and enclosing the points z , z 1 , z 2 , , z n . … β–ΊIf f is analytic in a simply-connected domain D , then for z D , …where Ο‰ n + 1 ⁑ ( ΞΆ ) is given by (3.3.3), and C is a simple closed contour in D described in the positive rotational sense and enclosing z 0 , z 1 , , z n . … β–ΊThen by using x 3 in Newton’s interpolation formula, evaluating [ x 0 , x 1 , x 2 , x 3 ] ⁑ f = 0.26608 28233 and recomputing f ⁒ ( x ) , another application of Newton’s rule with starting value x 3 gives the approximation x = 2.33810 7373 , with 8 correct digits. …
    8: 21.5 Modular Transformations
    β–ΊLet 𝐀 , 𝐁 , 𝐂 , and 𝐃 be g × g matrices with integer elements such that β–Ί
    21.5.1 πšͺ = [ 𝐀 𝐁 𝐂 𝐃 ]
    β–ΊHere ΞΎ ⁑ ( πšͺ ) is an eighth root of unity, that is, ( ΞΎ ⁑ ( πšͺ ) ) 8 = 1 . … β–Ί( 𝐀 invertible with integer elements.) …For a g × g matrix 𝐀 we define diag ⁒ 𝐀 , as a column vector with the diagonal entries as elements. …
    9: 8 Incomplete Gamma and Related
    Functions
    Chapter 8 Incomplete Gamma and Related Functions
    10: Bibliography
    β–Ί
  • A. Abramov (1960) Tables of ln ⁑ Ξ“ ⁒ ( z ) for Complex Argument. Pergamon Press, New York.
  • β–Ί
  • G. B. Airy (1849) Supplement to a paper “On the intensity of light in the neighbourhood of a caustic”. Trans. Camb. Phil. Soc. 8, pp. 595–599.
  • β–Ί
  • F. Alhargan and S. Judah (1992) Frequency response characteristics of the multiport planar elliptic patch. IEEE Trans. Microwave Theory Tech. 40 (8), pp. 1726–1730.
  • β–Ί
  • W. L. Anderson (1982) Algorithm 588. Fast Hankel transforms using related and lagged convolutions. ACM Trans. Math. Software 8 (4), pp. 369–370.
  • β–Ί
  • V. I. Arnol’d (1972) Normal forms of functions near degenerate critical points, the Weyl groups A k , D k , E k and Lagrangian singularities. Funkcional. Anal. i PriloΕΎen. 6 (4), pp. 3–25 (Russian).