About the Project

Visit (-- RXLARA.COM --) pharmacy buy Vega Extra Cobra over counter. Sildenafil Citrate Vega Extra Cobra used 120mg pills pri

AdvancedHelp

Did you mean Visit (-- welcom --) pharmacy buy Vega Extra oblat over counterpart. ident stratege Vega Extra oblat used 120mg mills pari ?

(0.012 seconds)

1—10 of 565 matching pages

1: 4.37 Inverse Hyperbolic Functions
In (4.37.1) the integration path may not pass through either of the points t = ± i , and the function ( 1 + t 2 ) 1 / 2 assumes its principal value when t is real. In (4.37.2) the integration path may not pass through either of the points ± 1 , and the function ( t 2 1 ) 1 / 2 assumes its principal value when t ( 1 , ) . …In (4.37.3) the integration path may not intersect ± 1 . … Arcsinh z and Arccsch z have branch points at z = ± i ; the other four functions have branch points at z = ± 1 . … Table 4.30.1 can also be used to find interrelations between inverse hyperbolic functions. …
2: 33.6 Power-Series Expansions in ρ
33.6.5 H ± ( η , ρ ) = e ± i θ ( η , ρ ) ( 2 + 1 ) ! Γ ( ± i η ) ( k = 0 ( a ) k ( 2 + 2 ) k k ! ( 2 i ρ ) a + k ( ln ( 2 i ρ ) + ψ ( a + k ) ψ ( 1 + k ) ψ ( 2 + 2 + k ) ) k = 1 2 + 1 ( 2 + 1 ) ! ( k 1 ) ! ( 2 + 1 k ) ! ( 1 a ) k ( 2 i ρ ) a k ) ,
where a = 1 + ± i η and ψ ( x ) = Γ ( x ) / Γ ( x ) 5.2(i)). … Corresponding expansions for H ± ( η , ρ ) can be obtained by combining (33.6.5) with (33.4.3) or (33.4.4).
3: 4.21 Identities
4.21.1 sin u ± cos u = 2 sin ( u ± 1 4 π ) = ± 2 cos ( u 1 4 π ) .
4.21.2 sin ( u ± v ) = sin u cos v ± cos u sin v ,
4.21.3 cos ( u ± v ) = cos u cos v sin u sin v ,
4.21.4 tan ( u ± v ) = tan u ± tan v 1 tan u tan v ,
4.21.5 cot ( u ± v ) = ± cot u cot v 1 cot u ± cot v .
4: 19.34 Mutual Inductance of Coaxial Circles
The method of §19.29(ii) uses (19.29.18), (19.29.16), and (19.29.15) to produce
19.34.3 2 a b I ( 𝐞 5 ) = a 3 I ( 𝟎 ) I ( 𝐞 3 ) = a 3 I ( 𝟎 ) r + 2 r 2 I ( 𝐞 3 ) = 2 a b ( I ( 𝟎 ) r 2 I ( 𝐞 1 𝐞 3 ) ) ,
where a 1 + b 1 t = 1 + t and
19.34.4 r ± 2 = a 3 ± 2 a b = h 2 + ( a ± b ) 2
19.34.5 3 c 2 8 π a b M = 3 R F ( 0 , r + 2 , r 2 ) 2 r 2 R D ( 0 , r + 2 , r 2 ) ,
5: 4.38 Inverse Hyperbolic Functions: Further Properties
4.38.15 Arcsinh u ± Arcsinh v = Arcsinh ( u ( 1 + v 2 ) 1 / 2 ± v ( 1 + u 2 ) 1 / 2 ) ,
4.38.16 Arccosh u ± Arccosh v = Arccosh ( u v ± ( ( u 2 1 ) ( v 2 1 ) ) 1 / 2 ) ,
4.38.17 Arctanh u ± Arctanh v = Arctanh ( u ± v 1 ± u v ) ,
4.38.18 Arcsinh u ± Arccosh v = Arcsinh ( u v ± ( ( 1 + u 2 ) ( v 2 1 ) ) 1 / 2 ) = Arccosh ( v ( 1 + u 2 ) 1 / 2 ± u ( v 2 1 ) 1 / 2 ) ,
4.38.19 Arctanh u ± Arccoth v = Arctanh ( u v ± 1 v ± u ) = Arccoth ( v ± u u v ± 1 ) .
6: 32.10 Special Function Solutions
For example, if α = 1 2 ε , with ε = ± 1 , then the Riccati equation is … Solutions for other values of α are derived from w ( z ; ± 1 2 ) by application of the Bäcklund transformations (32.7.1) and (32.7.2). … with n , and ε 1 = ± 1 , ε 2 = ± 1 , independently. … with n and ε = ± 1 . In the case when n = 0 in (32.10.15), the Riccati equation is …
7: 19.22 Quadratic Transformations
19.22.5 2 p ± = ( p + x ) ( p + y ) ± ( p x ) ( p y ) ,
4 ( p ± 2 a 2 ) = ( p 2 x 2 ± p 2 y 2 ) 2 .
2 z ± = ( z + x ) ( z + y ) ± ( z x ) ( z y ) ,
However, if x and y are complex conjugates and z and p are real, then the right-hand sides of all transformations in §§19.22(i) and 19.22(iii)—except (19.22.3) and (19.22.22)—are free of complex numbers and p ± 2 p 2 = ± | p 2 x 2 | 0 . … These relations need to be used with caution because y is negative when 0 < a < z + z ( z + 2 + z 2 ) 1 / 2 . …
8: 10.38 Derivatives with Respect to Order
10.38.1 I ± ν ( z ) ν = ± I ± ν ( z ) ln ( 1 2 z ) ( 1 2 z ) ± ν k = 0 ψ ( k + 1 ± ν ) Γ ( k + 1 ± ν ) ( 1 4 z 2 ) k k ! ,
10.38.6 I ν ( x ) ν | ν = ± 1 2 = 1 2 π x ( E 1 ( 2 x ) e x ± Ei ( 2 x ) e x ) ,
9: 8.12 Uniform Asymptotic Expansions for Large Parameter
8.12.5 e ± π i a 2 i sin ( π a ) Q ( a , z e ± π i ) = ± 1 2 erfc ( ± i η a / 2 ) i T ( a , η ) ,
8.12.11 c k ( η ) = n = 0 d k , n η n , | η | < 2 π ,
8.12.16 e ± π i a 2 i sin ( π a ) Q ( a , a e ± π i ) ± 1 2 i 2 π a k = 0 c k ( 0 ) ( a ) k , | ph a | π δ ,
8.12.18 Q ( a , z ) P ( a , z ) } z a 1 2 e z Γ ( a ) ( d ( ± χ ) k = 0 A k ( χ ) z k / 2 k = 1 B k ( χ ) z k / 2 ) ,
d ( ± χ ) = 1 2 π e χ 2 / 2 erfc ( ± χ / 2 ) ,
10: 10.59 Integrals
10.59.1 e i b t 𝗃 n ( t ) d t = { π i n P n ( b ) , 1 < b < 1 , 1 2 π ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,