About the Project

.ued在线最靠谱的博彩平台『世界杯佣金分红55%,咨询专员:@ky975』.ic6.k2q1w9-y0aqm00ek

AdvancedHelp

Did you mean .ued在线最靠谱的博彩平台『世界杯佣金分红55%,咨询专员:@1975』.ic6.k2q1w9-y0aqm00ek ?

(0.003 seconds)

1—10 of 227 matching pages

1: 36.5 Stokes Sets
where u satisfies the equation … Here u is the root of the equation … where u is the root of the equation …such that u > 1 3 . … where u is the positive root of the equation …
2: 4.24 Inverse Trigonometric Functions: Further Properties
4.24.13 Arcsin u ± Arcsin v = Arcsin ( u ( 1 v 2 ) 1 / 2 ± v ( 1 u 2 ) 1 / 2 ) ,
4.24.14 Arccos u ± Arccos v = Arccos ( u v ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) ,
4.24.15 Arctan u ± Arctan v = Arctan ( u ± v 1 u v ) ,
4.24.16 Arcsin u ± Arccos v = Arcsin ( u v ± ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) = Arccos ( v ( 1 u 2 ) 1 / 2 u ( 1 v 2 ) 1 / 2 ) ,
4.24.17 Arctan u ± Arccot v = Arctan ( u v ± 1 v u ) = Arccot ( v u u v ± 1 ) .
3: 12.6 Continued Fraction
For a continued-fraction expansion of the ratio U ( a , x ) / U ( a 1 , x ) see Cuyt et al. (2008, pp. 340–341).
4: 12.4 Power-Series Expansions
12.4.1 U ( a , z ) = U ( a , 0 ) u 1 ( a , z ) + U ( a , 0 ) u 2 ( a , z ) ,
12.4.2 V ( a , z ) = V ( a , 0 ) u 1 ( a , z ) + V ( a , 0 ) u 2 ( a , z ) ,
where the initial values are given by (12.2.6)–(12.2.9), and u 1 ( a , z ) and u 2 ( a , z ) are the even and odd solutions of (12.2.2) given by
12.4.3 u 1 ( a , z ) = e 1 4 z 2 ( 1 + ( a + 1 2 ) z 2 2 ! + ( a + 1 2 ) ( a + 5 2 ) z 4 4 ! + ) ,
12.4.4 u 2 ( a , z ) = e 1 4 z 2 ( z + ( a + 3 2 ) z 3 3 ! + ( a + 3 2 ) ( a + 7 2 ) z 5 5 ! + ) .
5: 22.8 Addition Theorems
For u , v , and with the common modulus k suppressed: … For u , v , and with the common modulus k suppressed: …
22.8.14 sn ( u + v ) = sn u cn u dn v + sn v cn v dn u cn u cn v + sn u dn u sn v dn v ,
22.8.15 cn ( u + v ) = sn u cn u dn v sn v cn v dn u sn u cn v dn v sn v cn u dn u ,
22.8.17 dn ( u + v ) = sn u cn v dn u sn v cn u dn v sn u cn v dn v sn v cn u dn u ,
6: 3.4 Differentiation
For partial derivatives we use the notation u t , s = u ( x 0 + t h , y 0 + s h ) . …
3.4.29 2 u 0 , 0 = 1 12 h 2 ( 60 u 0 , 0 + 16 ( u 1 , 0 + u 0 , 1 + u 1 , 0 + u 0 , 1 ) ( u 2 , 0 + u 0 , 2 + u 2 , 0 + u 0 , 2 ) ) + O ( h 4 ) .
3.4.34 4 u 0 , 0 = 1 6 h 4 ( 184 u 0 , 0 ( u 0 , 3 + u 0 , 3 + u 3 , 0 + u 3 , 0 ) + 14 ( u 0 , 2 + u 0 , 2 + u 2 , 0 + u 2 , 0 ) 77 ( u 0 , 1 + u 0 , 1 + u 1 , 0 + u 1 , 0 ) + 20 ( u 1 , 1 + u 1 , 1 + u 1 , 1 + u 1 , 1 ) ( u 1 , 2 + u 2 , 1 + u 1 , 2 + u 2 , 1 + u 1 , 2 + u 2 , 1 + u 1 , 2 + u 2 , 1 ) ) + O ( h 4 ) .
For additional formulas involving values of 2 u and 4 u on square, triangular, and cubic grids, see Collatz (1960, Table VI, pp. 542–546). …
7: 12.3 Graphics
See accompanying text
Figure 12.3.1: U ( a , x ) , a = 0. … Magnify
See accompanying text
Figure 12.3.3: U ( a , x ) , a = 0.5 , 2 , 3.5 , 5 . Magnify
See accompanying text
Figure 12.3.5: U ( 8 , x ) , U ¯ ( 8 , x ) , F ( 8 , x ) , 4 2 x 4 2 . Magnify
See accompanying text
Figure 12.3.6: U ( 8 , x ) , U ¯ ( 8 , x ) , G ( 8 , x ) , 4 2 x 4 2 . Magnify
See accompanying text
Figure 12.3.7: U ( a , x ) , 2.5 a 2.5 , 2.5 x 2.5 . Magnify 3D Help
8: 32.13 Reductions of Partial Differential Equations
The Korteweg–de Vries (KdV) equation … The sine-Gordon equation …
u ( x , t ) = v ( z ) ,
The Boussinesq equation …
u ( x , t ) = v ( z ) ,
9: 36.9 Integral Identities
36.9.3 | Ψ 1 ( x ) | 2 = 8 π 3 0 u 1 / 2 cos ( 2 u ( x + u 2 ) + 1 4 π ) d u .
36.9.4 | Ψ 2 ( x , y ) | 2 = 0 ( Ψ 1 ( 4 u 3 + 2 u y + x u 1 / 3 ) + Ψ 1 ( 4 u 3 + 2 u y x u 1 / 3 ) ) d u u 1 / 3 .
36.9.5 | Ψ 2 ( x , y ) | 2 = 2 0 cos ( 2 x u ) Ψ 1 ( 2 u 2 / 3 ( y + 2 u 2 ) ) d u u 1 / 3 .
36.9.6 | Ψ 3 ( x , y , z ) | 2 = 2 4 / 5 Ψ 3 ( 2 4 / 5 ( x + 2 u y + 3 u 2 z + 5 u 4 ) , 0 , 2 2 / 5 ( z + 10 u 2 ) ) d u .
36.9.7 | Ψ 3 ( x , y , z ) | 2 = 2 7 / 4 5 1 / 4 0 ( e 2 i u ( u 4 + z u 2 + x ) Ψ 2 ( 2 7 / 4 5 1 / 4 y u 3 / 4 , 2 u 5 ( 3 z + 10 u 2 ) ) ) d u u 1 / 4 .
10: 21.9 Integrable Equations
21.9.1 4 u t = 6 u u x + u x x x ,
21.9.2 i u t = 1 2 u x x ± | u | 2 u .
21.9.3 ( 4 u t + 6 u u x + u x x x ) x + 3 u y y = 0 .
Here x and y are spatial variables, t is time, and u ( x , y , t ) is the elevation of the surface wave. …These parameters, including 𝛀 , are not free: they are determined by a compact, connected Riemann surface (Krichever (1976)), or alternatively by an appropriate initial condition u ( x , y , 0 ) (Deconinck and Segur (1998)). …