About the Project

.11选5世界杯电竞网址『世界杯佣金分红55%,咨询专员:@ky975』.4y0.k2q1w9-2022年11月29日8时51分48秒6qguwmgqc

AdvancedHelp

Did you mean .11选5世界杯电竞网址『世界杯佣金分红55%,咨询专员:@1975』.4y0.k2q1w9-2022年11月29日8时51分48秒6qguwmgqc ?

(0.006 seconds)

1—10 of 349 matching pages

1: 13.30 Tables
  • Slater (1960) tabulates M ( a , b , x ) for a = 1 ( .1 ) 1 , b = 0.1 ( .1 ) 1 , and x = 0.1 ( .1 ) 10 , 7–9S; M ( a , b , 1 ) for a = 11 ( .2 ) 2 and b = 4 ( .2 ) 1 , 7D; the smallest positive x -zero of M ( a , b , x ) for a = 4 ( .1 ) 0.1 and b = 0.1 ( .1 ) 2.5 , 7D.

  • Zhang and Jin (1996, pp. 411–423) tabulates M ( a , b , x ) and U ( a , b , x ) for a = 5 ( .5 ) 5 , b = 0.5 ( .5 ) 5 , and x = 0.1 , 1 , 5 , 10 , 20 , 30 , 8S (for M ( a , b , x ) ) and 7S (for U ( a , b , x ) ).

  • 2: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 3: 26.2 Basic Definitions
    If, for example, a permutation of the integers 1 through 6 is denoted by 256413 , then the cycles are ( 1 , 2 , 5 ) , ( 3 , 6 ) , and ( 4 ) . Here σ ( 1 ) = 2 , σ ( 2 ) = 5 , and σ ( 5 ) = 1 . … As an example, { 1 , 3 , 4 } , { 2 , 6 } , { 5 } is a partition of { 1 , 2 , 3 , 4 , 5 , 6 } . … For the actual partitions ( π ) for n = 1 ( 1 ) 5 see Table 26.4.1. …
    Table 26.2.1: Partitions p ( n ) .
    n p ( n ) n p ( n ) n p ( n )
    4 5 21 792 38 26015
    4: 8.26 Tables
  • Pearson (1965) tabulates the function I ( u , p ) ( = P ( p + 1 , u ) ) for p = 1 ( .05 ) 0 ( .1 ) 5 ( .2 ) 50 , u = 0 ( .1 ) u p to 7D, where I ( u , u p ) rounds off to 1 to 7D; also I ( u , p ) for p = 0.75 ( .01 ) 1 , u = 0 ( .1 ) 6 to 5D.

  • Zhang and Jin (1996, Table 3.8) tabulates γ ( a , x ) for a = 0.5 , 1 , 3 , 5 , 10 , 25 , 50 , 100 , x = 0 ( .1 ) 1 ( 1 ) 3 , 5 ( 5 ) 30 , 50 , 100 to 8D or 8S.

  • Zhang and Jin (1996, Table 3.9) tabulates I x ( a , b ) for x = 0 ( .05 ) 1 , a = 0.5 , 1 , 3 , 5 , 10 , b = 1 , 10 to 8D.

  • Stankiewicz (1968) tabulates E n ( x ) for n = 1 ( 1 ) 10 , x = 0.01 ( .01 ) 5 to 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 5: 14.22 Graphics
    See accompanying text
    Figure 14.22.1: P 1 / 2 0 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
    See accompanying text
    Figure 14.22.2: P 1 / 2 1 / 2 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
    See accompanying text
    Figure 14.22.3: P 1 / 2 1 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
    See accompanying text
    Figure 14.22.4: 𝑸 0 0 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
    6: 26.9 Integer Partitions: Restricted Number and Part Size
    Table 26.9.1: Partitions p k ( n ) .
    n k
    4 0 1 3 4 5 5 5 5 5 5 5
    5 0 1 3 5 6 7 7 7 7 7 7
    9 0 1 5 12 18 23 26 28 29 30 30
    The conjugate to the example in Figure 26.9.1 is 6 + 5 + 4 + 2 + 1 + 1 + 1 . …
    Figure 26.9.2: The partition 5 + 5 + 3 + 2 represented as a lattice path.
    7: 26.13 Permutations: Cycle Notation
    26.13.2 [ 1 2 3 4 5 6 7 8 3 5 2 4 7 8 1 6 ]
    is ( 1 , 3 , 2 , 5 , 7 ) ( 4 ) ( 6 , 8 ) in cycle notation. …In consequence, (26.13.2) can also be written as ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) . … For the example (26.13.2), this decomposition is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 1 , 3 ) ( 2 , 3 ) ( 2 , 5 ) ( 5 , 7 ) ( 6 , 8 ) . Again, for the example (26.13.2) a minimal decomposition into adjacent transpositions is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 2 , 3 ) ( 1 , 2 ) ( 4 , 5 ) ( 3 , 4 ) ( 2 , 3 ) ( 3 , 4 ) ( 4 , 5 ) ( 6 , 7 ) ( 5 , 6 ) ( 7 , 8 ) ( 6 , 7 ) : inv ( ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) ) = 11 .
    8: 24.2 Definitions and Generating Functions
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    10 5 66 7.57575 7576 ×10⁻²
    Table 24.2.4: Euler numbers E n .
    n E n
    4 5
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    11 0 5 6 0 11 2 0 11 0 11 0 55 6 11 2 1
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    9: 5 Gamma Function
    Chapter 5 Gamma Function
    10: 28.6 Expansions for Small q
    28.6.2 a 1 ( q ) = 1 + q 1 8 q 2 1 64 q 3 1 1536 q 4 + 11 36864 q 5 + 49 5 89824 q 6 + 55 94 37184 q 7 83 353 89440 q 8 + ,
    28.6.10 a 5 ( q ) = 25 + 1 48 q 2 + 11 7 74144 q 4 + 1 1 47456 q 5 + 37 8918 13888 q 6 + ,
    28.6.11 b 5 ( q ) = 25 + 1 48 q 2 + 11 7 74144 q 4 1 1 47456 q 5 + 37 8918 13888 q 6 + ,
    For m = 3 , 4 , 5 , , … For the corresponding expansions of se m ( z , q ) for m = 3 , 4 , 5 , change cos to sin everywhere in (28.6.26). …