About the Project

.世界杯决赛32『网址:mxsty.cc』.微博世界杯榜-m4x5s2-2022年11月29日2时45分15秒

AdvancedHelp

Did you mean .世界杯决赛32『网址:style』.微博世界杯榜-m4x5s2-2022年11月29日2时45分15秒 ?

(0.003 seconds)

1—10 of 208 matching pages

1: 32 Painlevé Transcendents
Chapter 32 Painlevé Transcendents
2: 34.6 Definition: 9 j Symbol
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
3: Staff
  • Peter A. Clarkson, University of Kent, Chap. 32

  • Richard B. Paris, University of Abertay, Chaps. 8, 11

  • Hans Volkmer, University of Wisconsin, Milwaukee, Chaps. 29, 30

  • Peter A. Clarkson, University of Kent, for Chap. 32

  • Richard B. Paris, University of Abertay Dundee, for Chaps. 8, 11 (deceased)

  • 4: 34.7 Basic Properties: 9 j Symbol
    34.7.1 { j 11 j 12 j 13 j 21 j 22 j 13 j 31 j 31 0 } = ( 1 ) j 12 + j 21 + j 13 + j 31 ( ( 2 j 13 + 1 ) ( 2 j 31 + 1 ) ) 1 2 { j 11 j 12 j 13 j 22 j 21 j 31 } .
    34.7.2 j 12 j 34 ( 2 j 12 + 1 ) ( 2 j 34 + 1 ) ( 2 j 13 + 1 ) ( 2 j 24 + 1 ) { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } = δ j 13 , j 13 δ j 24 , j 24 .
    34.7.3 j 13 j 24 ( 1 ) 2 j 2 + j 24 + j 23 j 34 ( 2 j 13 + 1 ) ( 2 j 24 + 1 ) { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } { j 1 j 3 j 13 j 4 j 2 j 24 j 14 j 23 j } = { j 1 j 2 j 12 j 4 j 3 j 34 j 14 j 23 j } .
    34.7.4 ( j 13 j 23 j 33 m 13 m 23 m 33 ) { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = m r 1 , m r 2 , r = 1 , 2 , 3 ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) .
    34.7.5 j ( 2 j + 1 ) { j 11 j 12 j j 21 j 22 j 23 j 31 j 32 j 33 } { j 11 j 12 j j 23 j 33 j } = ( 1 ) 2 j { j 21 j 22 j 23 j 12 j j 32 } { j 31 j 32 j 33 j j 11 j 21 } .
    5: 26.2 Basic Definitions
    Table 26.2.1: Partitions p ( n ) .
    n p ( n ) n p ( n ) n p ( n )
    6 11 23 1255 40 37338
    7 15 24 1575 41 44583
    11 56 28 3718 45 89134
    12 77 29 4565 46 1 05558
    15 176 32 8349 49 1 73525
    6: Bibliography E
  • M. Edwards, D. A. Griggs, P. L. Holman, C. W. Clark, S. L. Rolston, and W. D. Phillips (1999) Properties of a Raman atom-laser output coupler. J. Phys. B 32 (12), pp. 2935–2950.
  • E. B. Elliott (1903) A formula including Legendre’s E K + K E K K = 1 2 π . Messenger of Math. 33, pp. 31–32.
  • A. Erdélyi (1941c) On algebraic Lamé functions. Philos. Mag. (7) 32, pp. 348–350.
  • D. Erricolo (2006) Algorithm 861: Fortran 90 subroutines for computing the expansion coefficients of Mathieu functions using Blanch’s algorithm. ACM Trans. Math. Software 32 (4), pp. 622–634.
  • W. N. Everitt (1982) On the transformation theory of ordinary second-order linear symmetric differential expressions. Czechoslovak Math. J. 32(107) (2), pp. 275–306.
  • 7: 27.2 Functions
    Table 27.2.1: Primes.
    n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
    5 11 47 97 149 197 257 313 379 439 499
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
    6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
    8 4 4 15 21 12 4 32 34 16 4 54 47 46 2 48
    12 4 6 28 25 20 3 31 38 18 4 60 51 32 4 72
    8: 4.17 Special Values and Limits
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
    θ sin θ cos θ tan θ csc θ sec θ cot θ
    11 π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) ( 2 3 ) 2 ( 3 + 1 ) 2 ( 3 1 ) ( 2 + 3 )
    9: 28.15 Expansions for Small q
    28.15.1 λ ν ( q ) = ν 2 + 1 2 ( ν 2 1 ) q 2 + 5 ν 2 + 7 32 ( ν 2 1 ) 3 ( ν 2 4 ) q 4 + 9 ν 4 + 58 ν 2 + 29 64 ( ν 2 1 ) 5 ( ν 2 4 ) ( ν 2 9 ) q 6 + .
    28.15.3 me ν ( z , q ) = e i ν z q 4 ( 1 ν + 1 e i ( ν + 2 ) z 1 ν 1 e i ( ν 2 ) z ) + q 2 32 ( 1 ( ν + 1 ) ( ν + 2 ) e i ( ν + 4 ) z + 1 ( ν 1 ) ( ν 2 ) e i ( ν 4 ) z 2 ( ν 2 + 1 ) ( ν 2 1 ) 2 e i ν z ) + ;
    10: 1.3 Determinants, Linear Operators, and Spectral Expansions
    1.3.1 det [ a j k ] = | a 11 a 12 a 21 a 22 | = a 11 a 22 a 12 a 21 .
    1.3.2 det [ a j k ] = | a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 | = a 11 | a 22 a 23 a 32 a 33 | a 12 | a 21 a 23 a 31 a 33 | + a 13 | a 21 a 22 a 31 a 32 | = a 11 a 22 a 33 a 11 a 23 a 32 a 12 a 21 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 .
    1.3.8 | a 11 a 12 a 21 a 22 | 2 ( a 11 2 + a 12 2 ) ( a 21 2 + a 22 2 ) ,