Index V
-
vacuum magnetic fields
- toroidal functions §14.31(i)
- validated computing §3.1(ii)
- Vandermondian ¶ ‣ §1.3(ii)
-
Van Vleck polynomials
- definition §31.15(i)
- zeros §31.15(ii)
- Van Vleck’s theorem for continued fractions ¶ ‣ §1.12(v)
- variational operator §2.3(i)
-
variation of parameters
- inhomogeneous differential equations ¶ ‣ §1.13(iii)
-
variation of real or complex functions ¶ ‣ §1.4(v)
- bounded ¶ ‣ §1.4(v)
- total ¶ ‣ §1.4(v)
- vector
-
vectors §1.6, see also vector-valued functions.
- angle ¶ ‣ §1.6(i)
-
cross product ¶ ‣ §1.6(i)
- right-hand rule ¶ ‣ §1.6(i)
- dot product ¶ ‣ §1.6(i)
- Einstein summation convention ¶ ‣ §1.6(ii), ¶ ‣ §1.6(ii)
- Levi-Civita symbol ¶ ‣ §1.6(ii)
- magnitude ¶ ‣ §1.6(i)
- notations §1.6, §1.6(ii)
- right-hand rule for cross products ¶ ‣ §1.6(i)
- scalar product, see dot product.
- unit ¶ ‣ §1.6(i)
- vector product, see cross product.
-
vector-valued functions §1.6, ¶ ‣ §1.6(v), see also parametrized surfaces.
- curl ¶ ‣ §1.6(iii)
- del operator ¶ ‣ §1.6(iii)
- divergence ¶ ‣ §1.6(iii)
- divergence (or Gauss’s) theorem ¶ ‣ §1.6(v)
- gradient ¶ ‣ §1.6(iii)
-
Green’s theorem
- three dimensions ¶ ‣ §1.6(v)
- two dimensions ¶ ‣ §1.6(iv)
- line integral §1.6(iv)
- path integral §1.6(iv)
- reparametrization of integration paths
- Stokes’ theorem ¶ ‣ §1.6(v)
-
vibrational problems
- Mathieu functions §28.33(ii), §28.33(ii), §28.33(ii)
-
Voigt functions
- applications §7.21
- computation §7.22(iv)
- definition §7.19(i)
- graphs Figure 7.19.1, Figure 7.19.1, Figure 7.19.2, Figure 7.19.2
- properties §7.19(iii)
- relation to line broadening function §7.19(i)
- tables §7.23(ii)
-
von Staudt–Clausen theorem
- Bernoulli numbers §24.10(i)
-
Voronoi’s congruence
- Bernoulli numbers §24.10(iii)

