
LATExml The Manual

A LATEX to xml Converter;
0.6.0

Bruce R. Miller

April 9, 2008

ii

Contents

1 Introduction 1

2 Using LATExml 3
2.1 Conversion . 4
2.2 Postprocessing . 5
2.3 Splitting . 8
2.4 Sites . 8

3 Architecture 9
3.1 Digestion . 9
3.2 Construction . 11
3.3 Rewriting . 11

4 Customization 13

5 Mathematics 15
5.1 Math Details . 16

5.1.1 Internal Math Representation 16
5.1.2 Grammatical Roles . 18

6 ToDo 21

A Commands 23

B Modules 33

C Utility Modules 89

D Postprocessing Modules 93

E Schema 95

iii

iv CONTENTS

Chapter 1

Introduction

For many, LATEX is the prefered format for document authoring, particularly
those involving significant mathematical content and where quality typesetting
is desired. On the other hand, content-oriented xml is an extremely useful rep-
resentation for documents, allowing them to be used, and reused, for a variety
of purposes, not least, presentation on the Web. Yet, the style and intent of
LATEX markup, as compared to xml markup, not to mention its programma-
bility, presents difficulties in converting documents from the former format to
the latter. Perhaps ironically, these difficulties can be particularly large for
mathematical material, where there is a tendency for the markup to focus on
appearance rather than meaning.

The choice of LATEX for authoring, and xml for delivery were natural and un-
controversial choices for the Digital Library of Mathematical Functions1. Faced
with the need to perform this conversion and the lack of suitable tools to per-
form it, the DLMF project proceeded to develop thier own tool, LATExml, for
this purpose. This document describes a preview release of LATExml.

Design Goals The idealistic goals of LATExml are:

• Faithful emulation of TEX’s behaviour.

• Easily extensible.

• Lossless; preserving both semantic and presentation cues.

• Uses abstract LATEX-like, extensible, document type.

• Determine the semantics of mathematical content
(Good Presentation MathML, eventually Content MathML and Open-
Math).

As these goals are not entirely practical, or even somewhat contradictory,
they are implicitly modified by “as much as possible.” Completely mimicing

1http://dlmf.nist.gov

1

2 CHAPTER 1. INTRODUCTION

TEX’s behaviour would seem to require the sneakiest modifications to TEX,
itself. ‘Ease of use’ is, of course, in the eye of the beholder. More significantly,
few documents are likely to have completely unambiguous mathematics markup;
human understanding of both the topic and the surrounding text is needed
to properly interpret any particular fragment. Thus, rather than pretend to
provide a ‘turn-key’ solution, we expect that document-specific declarations or
tuning to be necessary to faithfully convert documents. Towards this end, we
provide a variety of means to customize the processing and declare the author’s
intent. At the same time, especially for new documents, we encourage a more
logical, content-oriented markup style, over a purely presentation-oriented style.

Overview of this Manual Chapter 2 describes the usage of LATExml, along
with common use cases and techniques. Chapter 3 describes the system archi-
tecture in some detail. Strategies for customization and implementation of new
packages is described in Chapter 4. The special considerations for mathemat-
ics, including details of representation and how to improve the conversion, are
covered in Chapter 5. An overview of outstanding issues and planned future im-
provements are given in Chapter 6. Finally, the Appendices A, B give detailed
documentation on the commands and modules comprising the system.

If all else fails, you can consult the source code, or the author.

Chapter 2

Using LATExml

The main commands provided by the LATExml system are

latexml for converting TEX sources to xml.

latexmlpost for various postprocessing tasks including conversion to html,
processing images, conversion to MathML and so on.

The usage of these commands can be as simple as

latexml doc.tex | latexmpost --dest=doc.xhtml

to convert a single document into html, or as complicated as

latexml --dest=A.xml doca
latexml --dest=B.xml docb

. . .
latexmlpost --prescan --dbfile=my.db --dest=A.xhtml A
latexmlpost --prescan --dbfile=my.db --dest=B.xhtml B

. . .
latexmlpost --noscan --dbfile=my.db --dest=A.xhtml A
latexmlpost --noscan --dbfile=my.db --dest=B.xhtml B

. . .

to convert a whole set of documents into a complete site.
How best to use the commands depends, of course, on what you are trying

to achieve. In the next section, we’ll describe the use of latexml, which will be
sufficient if the xml representation is what you want, or if you intend to carry
out any further processing with your own xml-tools. The following sections
consider a sequence of successively more complicated postprocessing situations,
using latexmlpost, in which one or more TEX sources can be converted into
one or more web documents or a complete site.

3

4 CHAPTER 2. USING LATExml

2.1 Basic xml Conversion

The command

latexml options --destination=doc .xml doc

loads any required definition modules (see below), reads, tokenizes, expands and
digests the TEX document doc.tex (or from standard input, if - is given for
the filename), converts it to xml, performs some document rewriting, parses
the mathematical content and writes the result in doc.xml. For details on the
processing, see Chapter 3, and Chapter 5 for more information about math
parsing.

Module Loading A first consideration is what definitions for control se-
quences and environments are active and used for the processing. Definitions
and customization modules, if present, are loaded in the following order:

TeX.pool.ltxml the core module is always loaded.

--preload=module causes loading of module .ltxml. For example, if LATExml
fails to recognize a LATEX document --preload=LaTeX.pool can be useful
to force LATEX-mode. Or if you want This option can be repeated, and
the modules will be loaded in the given order.

doc .latexml a document-specific customization module is loaded if present.

As processing proceeds, additional modules may be loaded as follows.

LaTeX.pool.ltxml the core latex module, is loaded upon encountering certain
recognizably LATEX-specific commands, such as \documentclass.

\documentclass{class } loads class .cls.ltxml. (legacy \documentstyle
behaves similarly, along with any required packages).

\usepackage{package } (or related) loads package .sty.ltxml. LATExml will
not attempt to read the package .sty file, as these often involve LATEX
internals meaningless to the generation of xml, unless forced to with the
option

--includestyles

A selective, per-file, option may be developed in the future — please pro-
vide use cases.

\input{file } loads an appropriate version of file , specifically the first found
of: file .tex.ltxml, file .tex, file .ltxml or file .

Some of these modules (esp. TeX and LaTeX), are parts of the LATExml distri-
bution; others are supplied by the user, or can be overridden by the user. See
Chapter 4 for details about what can go in these modules.

Directories to search (in addition to the working directory) for modules and
other files can be specified using

2.2. POSTPROCESSING 5

--path=directory

This option can be repeated.

Other Options The number and detail of progress and debugging messages
printed during processing can be controlled using

--verbose and --quiet

They can be repeated to get even more or fewer details.
An option most useful in constructing complicated sites is

--documentid=id

which provides an ID for the document root element which is inheritted as a
prefix for id’s of the child-elements in the document. Using this option can
assure unique identifiers across a set of source documents.

See the documentation for the command latexml for less common options.

2.2 Basic Postprocessing

In the simplest situation, you have a single TEX source document from which
you want to generate a single output document. The command

latexmlpost options --destination=doc.xhtml doc

or similarly with --destination=doc.html, will carry out a set of appropriate
transformations in sequence:

• scanning of labels and ids;

• filling in the index and bibliography (if needed);

• cross-referencing;

• conversion of math;

• conversion of graphics and picture environments to web format (png);

• applying an xslt stylesheet.

The output format affects the defaults for each step and is determined by the
file extension of --destination, or by the option

--format=(xhtml|html|xml)

html both math and graphics are converted to png images; the stylesheet
LaTeXML-html.xslt is used.

xhtml math is converted to Presentation MathML, other graphics are con-
verted to images; the stylesheet LaTeXML-xhtml.xslt is used.

6 CHAPTER 2. USING LATExml

xml no math, graphics or xslt conversion is carried out.

Of course, all of these conversions can be controlled or overridden by explicit
options described below. For more details about less common options, see the
command documentation latexmlpost, as well as Appendix D.

Scanning The scanning step collects information about all labels, ids, index-
ing commands, cross-references and so on, to be used in the following postpro-
cessing stages.

Indexing An index is built from \index markup, if makeidx’s \printindex
command has been used, but this can be disabled by

--noindex

The index entries can be permuted with the option

--permutedindex

Thus \index{term a!term b} also shows up as \index{term b!term a}. This
leads to a more complete, but possibly rather silly, index, depending on how the
terms have been written.

Bibliography Bibilographic data from BibTeX can be provided with the op-
tion

--bibliography=bibfile .xml

However, the tools to convert a BibTeX file to xml are not yet provided with
the distribution.

Cross-Referencing In this stage, the scanned information is used to fill in
the text and links of cross-references within the document. The option

--urlstyle=(server|negotiated|file)

can control the format of urls with the document.

server formats urls appropriate for use from a web server. In particular, trailing
index.html are omitted. (default)

negotiated formats urls appropriate for use by a server that implements con-
tent negotiation. File extensions for html and xhtml are omitted. This
enables you to set up a server that serves the appropriate format depend-
ing on the browser being used.

file formats urls explicitly, with full filename and extension. This allows the
files to be browsed from the local filesystem.

2.2. POSTPROCESSING 7

Math Conversion Specific conversions of the mathematics can be requested
using the options

--mathimages converts math to png images,
--presentationmathml (or --pmml) creates Presentation MathML
--contentmathml (or --cmml) creates Content MathML
--openmath (or --om) creates OpenMath

(Each of these options can also be negated if needed, eg. --nomathimages) It
must be pointed out that the Content MathML and OpenMath conversions are
currently rather experimental.

More than one of these conversions can be requested, and each will be in-
cluded in the output document. However, the option

--parallelmath

can be used to generate parallel MathML markup, provided the first conversion
is either --pmml or --cmml.

Graphics processing Conversion of graphics (eg. from the graphic(s|x)
packages’ \includegraphics) can be enabled or disabled using

--graphicsimages or --nographicsimages

Similarly, the conversion of picture environments can be controlled with

--pictureimages or --nopictureimages

An experimental capability for converting the latter to SVG can be controlled
by

--svg or --nosvg

Stylesheet If you wish to provide your own xslt or css stylesheets, the op-
tions

--stylesheet=stylesheet .xsl
--css=stylesheet .css

can be used. The --css option can be repeated to include multiple stylesheets;
for example, the distribution provides several in addition to the core.css
stylesheet which is included by default.

navbar-left.css Places a navigation bar on the left.

navbar-right.css Places a navigation bar on the left.

theme-blue.css Colors various features in a soft blue.

amsart.css A style appropriate for many journal articles.

To develop such stylesheets, a knowledge of the LATExml document type is
necessary; See Appendix E.

8 CHAPTER 2. USING LATExml

2.3 Splitting the Output

For larger documents, it is often desirable to break the result into several inter-
linked pages. This split, carried out before scanning, is requested by

--splitat=level

where level is one of chapter, section, subsection, or subsubsection. For
example, section would split the document into chapters (if any) and sections,
along with separate bibliography, index and any appendices. The removed doc-
ument nodes are replaced by a Table of Contents.

The extra files are named using either the id or label of the root node of
each new page document according to

--splitnaming=(id|idrelative|label|labelrelative)

The relative foms create shorter names in subdirectories for each level of split-
ting. The --urlstyle option may also be useful here, as well as the latexml
option --documentid.

Additionally, the index and bibliography can be split into separate pages
according to the initial letter of entries by using the options

--splitindex and --splitbibliography

2.4 Site processing

A more complicated situation combines several TEX sources into a single inter-
linked site consisting of multiple pages and a composite index and bibliography.
The games one must play with LATEX’s aux files to satisfy cross-references be-
tween these documents are not covered here, but the situation is handled by
LATExml in the following fashion.

Conversion First, all TEX sources must be converted to xml, using latexml.
Since every target-able element in all files to be combined must have a
unique identifier, it is useful to prefix each identifier with a unique value
for each file. The latexml option --documentid=id provides this.

Scanning Secondly, all xml files must be split and scanned using the command

latexmlpost --prescan --dbfile=DB --dest=i .xhtml i

where DB names a file in which to store the scanned data. Other conver-
sions, including writing the output file, are skipped in this prescanning
step.

Pagination Finally, all xml files are cross-referenced and converted into the
final format using the command

latexmlpost --noscan --dbfile=DB --dest=i .xhtml i

which skips the unnecessary scanning step.

Chapter 3

Architecture

Like TEX, LATExml is data-driven: the text and executable control sequences
(ie. macros and primitives) in the source file (and any packages loaded) direct the
processing. The user exerts control over the conversion, and customizes it, by
providing alternative LATExml-specific implementations of the control sequences
and packages, by declaring properties of the desired document structure, and
by defining rewrite rules to be applied to the constructed document tree.

The top-level class, LaTeXML, manages the processing, providing several
methods for converting a TEX document or string into an xml document, with
varying degrees of postprocessing and optionally writing the document to file.
A LaTeXML::State object maintains the current state of processing, current
definitions for control sequences and emulates the TEX’s scoping rules. The
processing is broken into the following stages

Digestion the TEX-like digestion phase which converts the input into boxes.

Construction converts the resulting boxes into an xml DOM.

Rewriting applies rewrite rules to modify the DOM.

Math Parsing parses the tokenized mathematics.

See Figure 3.1 for illustration. The first three stages are discussed in the follow-
ing sections; the parsing of mathematics is covered in detail in Chapter 5.

The LaTeXML object binds $STATE, $GULLET, $STOMACH, and $MODEL to cor-
responding active objects during processing.

3.1 Digestion

Digestion is carried out primarily in a pull mode: The LaTeXML::Stomach pulls
expanded LaTeXML::Tokens from the LaTeXML::Gullet, which itself pulls to-
kens from the LaTeXML::Mouth. The LaTeXML::Mouth converts characters
from the plain text input into tokens according to the current category codes

9

10 CHAPTER 3. ARCHITECTURE

Figure 3.1: Flow of data through LATExml’s digestive tract.

assigned to them (in the LaTeXML::State). The LaTeXML::Gullet is respon-
sible for expanding any macro or expandible tokens (when the current binding
of the token in the LaTeXML::State is an LaTeXML::Expandable definition),
and for parsing sequences of tokens into common core datatypes (numbers, di-
mensions, etc.). The LaTeXML::Stomach digests these tokens by executing
LaTeXML::Primitive control sequences (generally for side effect), converting
control sequences bound to LaTeXML::Constructors into LaTeXML::Whatsits,
and converting the remaining tokens into a recursive structure consisting of
LaTeXML::Boxes and LaTeXML::Lists and of LaTeXML::Boxes.

3.2. CONSTRUCTION 11

3.2 Construction

The main (intentional) deviation of LATExml’s digestion from that of TEX is in
the extension of control sequences to include LaTeXML::Constructors respon-
sible for constructing xml document fragments, and LaTeXML::Whatsits to
represent thier digested form including whatever arguments were passed to the
control sequence.

Construction thus consists of creating an LaTeXML::Document, containing
an XML::LibXML::Document structure, and having it absorb the digested lists,
boxes and whatsits. Generally, boxes represent text which is converted to text
nodes within the document. Whatsits generally create a document fragment
involving elements, attributes and text.

A LaTeXML::Model is maintained througout the digestion phase which ac-
cumulates any document model declarations in particular the document type
(currently only the DTD, but eventually may be RelaxNG based). As LATEX
markup is more like sgml than xml, declarations may be used to indicate which
elements may be automatically opened or closed when needed to build a doc-
ument tree that matches the document type. As an example, a <subsection>
will automaticall be closed when a <section> is begun.

3.3 Rewriting

Once the basic document is constructed, LaTeXML::Rewrite rules are applied
which can perform various functions. Ligatures and combining mathematics
digits and letters (in certain fonts) into composite math tokens are handled this
way. Additionally, declarations of the type or grammatical role of math tokens
can be applied here.

http://search.cpan.org/search?query=XML::LibXML::Document&mode=module

12 CHAPTER 3. ARCHITECTURE

Chapter 4

Customization

The processsing of the LATEX document and its conversion into xml is affected
by the definitions of control sequences, either as macros, primitives or construc-
tors, and other declarations specifying the document type, properties of xml
tags, ligatures, These definitions and declarations are typically contained
in ‘packages’ which provide the implementation of LATEX classes and packages.
For example, the LATEX directive \usepackage{foo} would cause LATExml to
load the file foo.sty.ltxml. This file would be sought in any of the direc-
tories in perl’s @INC list (typically including the current directory), or in a
LaTeXML/Package subdirectory of any of those directories. If no such file is
found, LATExml would look for foo.sty and attempt to process it.

When processing a typical file, say jobname .tex, the following packages are
loaded:

1. the core TeX package

2. any packages named with the --preload option,

3. a file jobname .latexml, if present; this provides for document-specific
declarations.

Document processing then commences; by default, LATExml assumes that the
document is plain TEX. However, if a \documentclass directive is encountered,
the LaTeX package, as well as a package for the named document class are loaded.

LATExml implementations are provided for a number of the standard LATEX
packages, although many implement only part of the functionality. Contributed
implementations are, of course, welcome. These files, as well as the document
specific jobname .latexml, are essentially Perl modules, but use the facilities
described in LaTeXML::Package.

Much more needs to be explained here, but for the time being, please con-
sult the documentation for the module LaTeXML::Package, and the various
implementations of packages included with the distribution.

13

14 CHAPTER 4. CUSTOMIZATION

Chapter 5

Mathematics

There are several issues that have to be dealt with in treating the mathematics.
On the one hand, the TEX markup gives a pretty good indication of what the
author wants the math to look like, and so we would seem to have a good
handle on the conversion to presentation forms. On the other hand, content
formats are desirable as well; there are a few, but too few, clues about what the
intent of the mathematics is. And in fact, the generation of even Presentation
MathML of high quality requires recognizing the mathematical structure, if not
the actual semantics. The mathematics processing must therefore preserve the
presentational information provided by the author, while inferring, likely with
some help, the mathematical content.

From a parsing point of view, the TEX-like processing serves as the lexer,
tokenizing the input which LATExml will then parse [perhaps eventually a type-
analysis phase will be added]. Of course, there are a few twists. For one,
the tokens, represented by XMTok, can carry extra attributes such as font and
style, but also the name, meaning and grammatical role, with defaults that
can be overridden by the author — more on those, in a moment. Another
twist is that, although LATEX’s math markup is not nearly as semantic as we
might like, there is considerable semantics and structure in the markup that
we can exploit. For example, given a \frac, we’ve already established the
numerator and denominator which can be parsed individually, but the fraction
as a whole can be directly represented as an application, using XMApp, of a
fraction operator; the resulting structure can be treated as atomic within its
containing expression.This structure preserving character greatly simplifies the
parsing task and helps reduce misinterpretation.

The parser, invoked by the postprocessor, works only with the top-level lists
of lexical tokens, or with those sublists contained in an XMArg. The grammar
works primarily through the name and grammatical role. The name is given by
an attribute, or the content if it is the same. The role (things like ID, FUNC-
TION, OPERATOR, OPEN, . . .) is also given by an attribute, or, if not present,
the name is looked up in a document-specific dictionary (jobname .dict), or in
a default dictionary.

15

16 CHAPTER 5. MATHEMATICS

Additional exceptions that need fuller explanation are:

• LaTeXML::Constructors may wish to create a dual object (XMDual) whose
children are the semantic and presentational forms.

• Spacing and similar markup generates XMHint elements, which are cur-
rently ignored during parsing, but probably shouldn’t.

5.1 Math Details

LATExml processes mathematical material by proceeding through several stages:

• Basic processing of macros, primitives and constructors resulting in an
XML document; the math is primarily represented by a sequence of tokens
(XMTok) or structured items (XMApp, XMDual) and hints (XMHint, which are
ignored).

• Document tree rewriting, where rules are applied to modify the document
tree. User supplied rules can be used here to clarify the intent of markup
used in the document.

• Math Parsing; a grammar based parser is applied, depth first, to each level
of the math. In particular, at the top level of each math expression, as
well as each subexpression within structured items (these will have been
contained in an XMArg or XMWrap element). This results in an expression
tree that will hopefully be an accurate representation of the expression’s
structure, but may be ambigous in specifics (eg.‘what the meaning of a
superscript is). The parsing is driven almost entirely by the grammatical
role assigned to each item.

• Not yet implemented a following stage must be developed to resolve the
semantic ambiguities by analyzing and augmenting the expression tree.

• Target conversion: from the internal XM* representation to MathML or
OpenMath.

The Math element is a top-level container for any math mode material, serv-
ing as the container for various representations of the math including images
(through attributes mathimage, width and height), textual (through attributes
tex, content-tex and text), MathML and the internal representation itself.
The mode attribute specifies whether the math should be in display or inline
mode.

5.1.1 Internal Math Representation

The XMath element is the container for the internal representation
The following attributes can appear on all XM* elements:

role the grammatical role that this element plays

5.1. MATH DETAILS 17

open, close parenthese or delimiters that were used to wrap the expression
represented by this element.

argopen, argclose, separators delimiters on an function or operator (the
first element of an XMApp) that were used to delimit the arguments of
the function. The separators is a string of the punctuation characters
used to separate arguments.

xml:id a unique identifier to allow reference (XMRef) to this element.

Math Tags The following tags are used for the intermediate math represen-
tation:

XMTok represents a math token. It may contain text for presentation. Addi-
tional attributes are:

name the name that represents the ‘meaning’ of the token; this overrides
the content for identifying the token.

omcd the OpenMath content dictionary that the name belongs to.

font the font to be used for presenting the content.

style ?

size ?

stackscripts whether scripts should be stacked above/below the item,
instead of the usual script position.

XMApp represents the generalized application of some function or operator to
arguments. The first child element is the operator, the remainig elements
are the arguments. Additional attributes:

name the name that represents the meaning of the construct as a whole.

stackscripts ?

XMDual combines representations of the content (the first child) and presen-
tation (the second child), useful when the two structures are not easily
related.

XMHint represents spacing or other apparent purely presentation material.

name names the effect that the hint was intended to achieve.

style ?

XMWrap serves to assert the expected type or role of a subexpression that may
otherwise be difficult to interpret — the parser is more forgiving about
these.

name ?

style ?

18 CHAPTER 5. MATHEMATICS

XMArg serves to wrap individual arguments or subexpressions, created by struc-
tured markup, such as \frac. These subexpressions can be parsed indi-
vidually.

rule the grammar rule that this subexpression should match.

XMRef refers to another subexpression,. This is used to avoid duplicating argu-
ments when constructing an XMDual to represent a function application,
for example. The arguments will be placed in the content branch (wrapped
in an XMArg) while XMRef’s will be placed in the presentation branch.

idref the identifier of the referenced math subexpression.

5.1.2 Grammatical Roles

The role attempts to capture the syntactic nature of each item. This is used
primarily to drive the parsing; the grammar rules are keyed on the role, rather
than content, of the nodes. The role is also used to drive the conversion to
presentation markup, especially Presentation MathML, and in fact some values
of role are only used that way, never appearing explicitly in the grammar.

The following grammatical roles are recognized by the math parser. These
values can be specified in the role attribute during the initial document con-
struction or by rewrite rules. Although the precedence of operators is loosely
described in the following, since the grammar contains various special case pro-
ductions, no rigidly ordered precedence is given.

ATOM a general atomic subexpression.

ID a variable-like token, whether scalar or otherwise.

PUNCT punctuation.

APPLYOP an explicit infix application operator (high precedence).

RELOP a relational operator, loosely binding.

ARROW an arrow operator (with little semantic significance). treated equivalently
to RELOP.

METARELOP an operator used for relations between relations, with lower prece-
dence.

ADDOP an addition operator, precedence between relational and multiplicative
operators.

MULOP a multiplicative operator, high precedence.

SUPOP An operator appearing in a superscript, such as a collection of primes.

OPEN an open delimiter.

5.1. MATH DETAILS 19

CLOSE a close delimiter.

MIDDLE a middle operator used to group items between an OPEN, CLOSE pair.

OPERATOR a general operator; higher precedence than function application. For
example, for an operator A, and function F , AFx would be interpretted
as (A(F))(x).

SUMOP a summation/union operator.

INTOP an integral operator.

LIMITOP a limiting operator.

DIFFOP a differential operator.

BIGOP a general operator, but lower precedence, such as a P preceding an in-
tegral to denote the principal value. Note that SUMOP, INTOP, LIMITOP,
DIFFOP and BIGOP are treated equivalently by the grammar, but are dis-
tinguished to facilitate (eventually!) analyzing the argument structure (eg
bound variables and differentials within an integral). Note are SUMOP and
LIMITOP significantly different in this sense?

VERTBAR

FUNCTION a function which (may) apply to following arguments with higher
precedence than addition and multiplication, or parenthesized arguments.

NUMBER a number.

POSTSUPERSCRIPT the usual superscript, where the script is treated as an argu-
ment, but the base will be determined by parsing. Note that this is not
necessarily assumed to be a power. Very high precedence.

POSTSUBSCRIPT Similar to POSTSUPERSCRIPT for subscripts.

FLOATINGSUPERSCRIPT A special case for a superscript on an empty base, ie.
{}^{x}. It is often used to place a pre-superscript or for non-math uses
(eg. 10${}^{th}).

FLOATINGSUBSCRIPT Similar to POSTSUPERSCRIPT for subscripts.

POSTFIX for a postfix operator

UNKNOWN an unknown expression. This is the default for token elements, and
generates a warning if the unknown seems to be used as a function.

The following roles are not used in the grammar, but are used to capture
the presentation style:

STACKED corresponds to stacked structures, such as \atop, and the presentation
of binomial coefficients.

20 CHAPTER 5. MATHEMATICS

Chapter 6

ToDo

Lots. . . !

• Lots of useful LATEX packages have not been implemented, and those that
are aren’t necessarily complete.

• TEX boxes aren’t really complete, and in particular things like \ht0 don’t
work.

• Possibly useful to override (pre-override?) a macro defined in the source
file; that is, define it and silently ignore the definition given in the source.

• . . . um, . . . documentation!

21

22 CHAPTER 6. TODO

Appendix A

Command Documentation

latexml

Transforms a TeX/LaTeX file into XML.

Synopsis

latexml [options] texfile

Options:
--destination=file specifies destination file (default stdout).
--output=file [obsolete synonym for --destination]
--preload=module requests loading of an optional module;

can be repeated
--includestyles allows latexml to load raw *.sty file;

by default it avoids this.
--path=dir adds dir to the paths searched for files,

modules, etc;
--documentid=id assign an id to the document root.
--quiet suppress messages (can repeat)
--verbose more informative output (can repeat)
--strict makes latexml less forgiving of errors
--xml requests xml output (default).
--tex requests TeX output after expansion.
--box requests box output after expansion

and digestion.
--noparse suppresses parsing math
--nocomments omit comments from the output
--inputencoding=enc specify the input encoding.
--VERSION show version number.
--debug=package enables debugging output for the named

package

23

24 APPENDIX A. COMMANDS

--help shows this help message.

If texfile is ’-’, latexml reads the TeX source from standard input.

Options & Arguments

--destination=file

Specifies the destination file; by default the XML is written to stdout.

--preload=module

Requests the loading of an optional module or package. This may be
useful if the TeX code does not specificly require the module (eg. through
input or usepackage). For example, use --preload=LaTeX.pool to force
LaTeX mode.

--includestyles

This optional allows processing of style files (files with extensions sty,
cls, clo, cnf). By default, these files are ignored unless a latexml imple-
mentation of them is found (with an extension of ltxml).

These style files generally fall into two classes: Those that merely affect
document style are ignorable in the XML. Others define new markup and
document structure, often using deeper LaTeX macros to achieve their
ends. Although the omission will lead to other errors (missing macro
definitions), it is unlikely that processing the TeX code in the style file
will lead to a correct document.

--path=dir

Add dir to the search paths used when searching for files, modules, style
files, etc; somewhat like TEXINPUTS. This option can be repeated.

--documentid=id

Assigns an ID to the root element of the XML document. This ID is
generally inherited as the prefix of ID’s on all other elements within the
document. This is useful when constructing a site of multiple documents
so that all nodes have unique IDs.

--quiet

Reduces the verbosity of output during processing, used twice is pretty
silent.

--verbose

Increases the verbosity of output during processing, used twice is pretty
chatty. Can be useful for getting more details when errors occur.

25

--strict

Specifies a strict processing mode. By default, undefined control sequences
and invalid document constructs (that violate the DTD) give warning
messages, but attempt to continue processing. Using –strict makes them
generate fatal errors.

--xml

Requests XML output; this is the default.

--tex

Requests TeX output for debugging purposes; processing is only carried
out through expansion and digestion. This may not be quite valid TeX,
since Unicode may be introduced.

--box

Requests Box output for debugging purposes; processing is carried out
through expansion and digestions, and the result is printed.

--nocomments

Normally latexml preserves comments from the source file, and adds a
comment every 25 lines as an aid in tracking the source. The option
–nocomments discards such comments.

--inputencoding=encoding

Specify the input encoding, eg. --inputencoding=iso-8859-1. The en-
coding must be one known to Perl’s Encode package. Note that this only
enables the translation of the input bytes to UTF-8 used internally by
LaTeXML, but does not affect catcodes. In such cases, you should be
using the inputenc package. Note also that this does not affect the output
encoding, which is always UTF-8.

--VERSION

Shows the version number of the LaTeXML package..

--debug=package

Enables debugging output for the named package. The package is given
without the leading LaTeXML::.

--help

Shows this help message.

See also

latexmlpost, LaTeXML

http://search.cpan.org/search?query=latexmlpost&mode=module

26 APPENDIX A. COMMANDS

latexmlpost

Postprocesses an xml file generated by latexml to perform common tasks, such
as convert math to images and processing graphics inclusions for the web.

Synopsis

latexmlpost [options] xmlfile

Options:
--verbose shows progress during processing.
--VERSION show version number.
--help shows help message.
--sourcedirectory=sourcedir specifies directory of source TeX file.
--validate, --novalidate Enables (the default) or disables

validation of the source xml.
--format=html|xhtml|xml requests the output format.
--destination=file specifies output file (and directory).
--omitdoctype omits the Doctype declaration,
--noomitdoctype disbles the omission (the default)
--numbersections enables (the default) the inclusion

of section numbers in titles and crossrefs.
--nonumbersections disbles the above
--stylesheet=xslfile requests the XSL transform using the

given xslfile as stylesheet.
--css=cssfile adds a css stylesheet to html/xhtml

(can be repeated)
--nodefaultcss disables inclusion of default css stylesheet
--split requests splitting each document
--nosplit disables the above (default)
--splitat specifies level to split the document
--splitpath=xpath specifies xpath expression for splitting

(default is section-like, if splitting)
--splitnaming=(id|idrelative|label|labelrelative) specifies how

to name split files (def. idrelative).
--scan scans documents to extract ids, labels,

section titles, etc. (default)
--noscan disables the above
--crossref fills in crossreferences (default)
--nocrossref disables the above
--urlstyle=(server|negotiated|file) format to use for urls

(default server).
--index requests filling in the index (default)
--noindex disables the above
--splitindex Splits the index into pages per initial.
--nosplitindex disables the above (default)

27

--permutedindex permutes index phrases in the index
--nopermutedindex disables the above (default)
--bibliography=file specifies a bibliography file
--splitbibliography splits the bibliography into pages per

initial.
--nosplitbibliography disables the above (default)

--prescan carries out only the split (if enabled)
and scan, storing cross-referencing data
in dbfile
(default is complete processing)

--dbfile=dbfile specifies file to store crossreferences
--mathimages converts math to images

(default for html format)
--nomathimages disables the above
--mathimagemagnification=mag specifies magnification factor
--presentationmathml converts math to Presentation MathML

(default for xhtml format)
--pmml alias for --presentationmathml
--nopresentationmathml disables the above
--linelength=n formats presentation mathml to a

linelength max of n characters
--contentmathml converts math to Content MathML
--nocontentmathml disables the above (default)
--cmml alias for --contentmathml
--openmath converts math to OpenMath
--noopenmath disables the above (default)
--om alias for --openmath
--parallelmath requests parallel math markup for MathML

(default when multiple math formats)
--noparallelmath disables the above
--keepXMath preserves the intermediate XMath

representation (default is to remove)
--graphicimages converts graphics to images (default)
--nographicimages disables the above
--pictureimages converts picture environments to

images (default)
--nopictureimages disables the above
--svg converts picture environments to SVG
--nosvg disables the above (default)

If xmlfile is ’-’, latexmlpost reads the XML from standard input.

28 APPENDIX A. COMMANDS

Options & Arguments

General Options

--verbose

Requests informative output as processing proceeds. Can be repeated to
increase the amount of information.

--VERSION

Shows the version number of the LaTeXML package..

--help

Shows this help message.

Source Options

--sourcedirectory=source

Specifies the directory where the original latex source is located. Unless
latexmlpost is run from that directory, or it can be determined from the
xml filename, it may be necessary to specify this option in order to find
graphics and style files.

--validate, --novalidate

Enables (or disables) the validation of the source XML document (the
default).

Format Options

--format=(html|xhtml|xml)
Specifies the output format for post processing. html format converts
the material to html and the mathematics to png images. xhtml format
converts to xhtml and uses presentation MathML (after attempting to
parse the mathematics) for representing the math. In both cases, any
graphics will be converted to web-friendly formats and/or copied to the
destination directory. By default, xml, the output is left in LaTeXML’s
xml, but the math is parsed and converted to presentation MathML. For
html and xhtml, a default stylesheet is provided, but see the --stylesheet
option.

--destination=destination

Specifies the destination file and directory. The directory is needed for
mathimages and graphics processing.

--omitdoctype, --noomitdoctype

Omits (or includes) the document type declaration. The default is to
include it if the document model was based on a DTD.

29

--numbersections, --nonumbersections

Includes (default), or disables the inclusion of section, equation, etc, num-
bers in the formatted document and crossreference links.

--stylesheet=xslfile

Requests the XSL transformation of the document using the given xslfile
as stylesheet. If the stylesheet is omitted, a ‘standard’ one appropriate for
the format (html or xhtml) will be used.

--css=cssfile

Adds cssfile as a css stylesheet to be used in the transformed html/xhtml.
Multiple stylesheets can be used; they are included in the html in the
order given, following the default core.css (but see --nodefaultcss).
Some stylesheets included in the distribution are –css=navbar-left Puts a
navigation bar on the left. (default omits navbar) –css=navbar-right Puts
a navigation bar on the left. –css=theme-blue A blue coloring theme for
headings. –css=amsart A style suitable for journal articles.

--nodefaultcss

Disables the inclusion of the default core.css stylesheet.

Site & Crossreferencing Options

--split, --nosplit

Enables or disables (default) the splitting of documents into multiple
‘pages’. If enabled, the the document will be split into sections, bibli-
ography, index and appendices (if any) by default, unless --splitpath is
specified.

--splitat=unit

Specifies what level of the document to split at. Should be one of chapter,
section (the default), subsection or subsubsection. For more control,
see --splitpath.

--splitpath=xpath

Specifies an XPath expression to select nodes that will generate sep-
arate pages. The default splitpath is //ltx:section |//ltx:bibliography
|//ltx:appendix |//ltx:index

Specifying –splitpath=”//ltx:section |//ltx:subsection |//ltx:bibliography
|//ltx:appendix |//ltx:index”

would split the document at subsections as well as sections.

--splitnaming=(id|idrelative|label|labelrelative)
Specifies how to name the files for subdocuments created by splitting. The
values id and label simply use the id or label of the subdocument’s root

30 APPENDIX A. COMMANDS

node for it’s filename. idrelative and labelrelative use the portion of
the id or label that follows the parent document’s id or label. Furthermore,
to impose structure and uniqueness, if a split document has children that
are also split, that document (and it’s children) will be in a separate
subdirectory with the name index.

--scan, --noscan

Enables (default) or disables the scanning of documents for ids, labels,
references, indexmarks, etc, for use in filling in refs, cites, index and so
on. It may be useful to disable when generating documents not based on
the LaTeXML doctype.

--crossref, --nocrossref

Enables (default) or disables the filling in of references, hrefs, etc based
on a previous scan (either from --scan, or --dbfile) It may be useful to
disable when generating documents not based on the LaTeXML doctype.

--urlstyle=(server|negotiated|file)

This option determines the way that URLs within the documents are for-
matted, depending on the way they are intended to be served. The default,
server, eliminates unneccessary trailing index.html. With negotiated,
the trailing file extension (typically html or xhtml) are eliminated. The
scheme file preserves complete (but relative) urls so that the site can be
browsed as files without any server.

--index, --noindex

Enables (default) or disables the generation of an index from indexmarks
embedded within the document. Enabling this has no effect unless there
is an index element in the document (generated by \printindex).

--splitindex, --nosplitindex

Enables or disables (default) the splitting of generated indexes into sepa-
rate pages per initial letter.

--bibliography=pathname

Specifies a bibliography file generated from a BibTeX file and used to
fill in a bibliography element. Hand-written bibliographies placed in a
thebibliography environment do not need this processing. Enabling
this has no effect unless there is an bibliography element in the document
(generated by \bibliography).

--splitbibliography, --nosplitbibliography

Enables or disables (default) the splitting of generated bibliographies into
separate pages per initial letter.

31

--prescan

By default latexmlpost processes a single document into one (or more;
see --split) destination files in a single pass. When generating a com-
plicated site consisting of several documents it may be advantageous to
first scan through the documents to extract and store (in dbfile) cross-
referencing data (such as ids, titles, urls, and so on). A later pass then
has complete information allowing all documents to reference each other,
and also constructs an index and bibliography that reflects the entire doc-
ument set. The same effect (though less efficient) can be achieved by
running latexmlpost twice, provided a dbfile is specified.

--dbfile=file

Specifies a filename to use for the crossreferencing data when using two-
pass processing. This file may reside in the intermediate destination di-
rectory.

Math Options

These options specify how math should be converted into other formats. Multi-
ple formats can be requested; how they will be combined depends on the format
and other options.

--mathimages, --nomathimages

Requests or disables the conversion of math to images. Conversion is the
default for html format.

--mathimagemagnification=factor

Specifies the magnification used for math images, if they are made. Default
is 1.75.

--presentationmathml, --nopresentationmathml

Requests or disables conversion of math to Presentation MathML. Con-
version is the default for xhtml format.

--linelength=number

(Experimental) Line-breaks the generated Presentation MathML so that
it is no longer than number ‘characters’.

--contentmathml, --nocontentmathml

Requests or disables conversion of math to Content MathML. Conver-
sion is disabled by default. Note that this conversion is only partially
implemented.

--openmath

Requests or disables conversion of math to OpenMath. Conversion is dis-
abled by default. Note that this conversion is only partially implemented.

32 APPENDIX A. COMMANDS

--parallelmath, --noparallelmath

Requests or disables parallel math markup. Parallel markup is the default
for xhtml formats when multiple math formats are requested.

This method uses the MathML semantics element with additional for-
mats appearing as annotation’s. The first math format requested must
be either Presentation or Content MathML; additional formats may be
MathML or OpenMath.

If this option is disabled and multiple formats are requested, the repre-
sentations are simply stored as separate children of the Math element.

--keepXMath

By default, when any of the MathML or OpenMath conversions are used,
the intermediate math representation will be removed; this option pre-
serves it.

Graphics Options

--graphicimages, --nographicimages

Enables (default) or disables the conversion of graphics to web-appropriate
format (png).

--pictureimages, --nopictureimages

Enables (default) or disables the conversion of picture environments and
pstricks material into images.

--svg, --nosvg

Enables or disables (default) the conversion of picture environments and
pstricks material to SVG.

See also

latexml, LaTeXML

http://search.cpan.org/search?query=latexml&mode=module

Appendix B

Core Module
Documentation

LaTeXML

Transforms TeX into XML.

Synopsis

use LaTeXML;
my $latexml = LaTeXML->new();
$latexml->convertAndWrite("adocument");

But also see the convenient command line script latexml which suffices for
most purposes.

Description

Methods

my $latexml = LaTeXML->new(%options);

Creates a new LaTeXML object for transforming TeX files into XML.

verbosity : Controls verbosity; higher is more verbose,
smaller is quieter. 0 is the default.

strict : If true, undefined control sequences and
invalid document constructs give fatal
errors, instead of warnings.

includeComments : If false, comments will be excluded
from the result document.

preload : an array of modules to preload
searchpath : an array of paths to be searched for Packages

33

http://search.cpan.org/search?query=latexml&mode=module

34 APPENDIX B. MODULES

and style files.

(these generally set config variables in the LaTeXML::State object)

$latexml->convertAndWriteFile($file);

Reads the TeX file $file.tex, digests and converts it to XML, and saves
it in $file.xml.

$doc = $latexml->convertFile($file);

Reads the TeX file $file, digests and converts it to XML and returns the
resulting XML::LibXML::Document.

$doc = $latexml->convertString($string);

Digests $string, presumably containing TeX markup, converts it to XML
and returns the XML::LibXML::Document.

$latexml->writeDOM($doc,$name);

Writes the XML document to $name.xml.

$string = $latexml->DOMtoString($doc);

Converts the XML document to a string (of utf8 bytes).

$box = $latexml->digestFile($file);

Reads the TeX file $file, and digests it returning the LaTeXML::Box
representation.

$box = $latexml->digestString($string);

Digests $string, which presumably contains TeX markup, returning the
LaTeXML::Box representation.

$doc = $latexml->convertDocument($digested);

Converts $digested (the LaTeXML::Box reprentation) into XML, return-
ing the XML::LibXML::Document.

Customization

In the simplest case, LaTeXML will understand your source file and convert
it automatically. With more complicated (realistic) documents, you will likely
need to make document specific declarations for it to understand local macros,
your mathematical notations, and so forth. Before processing a file doc.tex,
LaTeXML reads the file doc.latexml, if present. Likewise, the LaTeXML imple-
mentation of a TeX style file, say style.sty is provided by a file style.ltxml.

See LaTeXML::Package for documentation of these customization and im-
plementation files.

http://search.cpan.org/search?query=XML::LibXML::Document&mode=module
http://search.cpan.org/search?query=XML::LibXML::Document&mode=module
http://search.cpan.org/search?query=XML::LibXML::Document&mode=module

35

See also

See latexml for a simple command line script.
See LaTeXML::Package for documentation of these customization and im-

plementation files.
For cases when the high-level declarations described in LaTeXML::Package

are not enough, or for understanding more of LaTeXML’s internals, see

LaTeXML::State

maintains the current state of processing, bindings or variables, definitions,
etc.

LaTeXML::Token, LaTeXML::Mouth and LaTeXML::Gullet

deal with tokens, tokenization of strings and files, and basic TeX sequences
such as arguments, dimensions and so forth.

LaTeXML::Box and LaTeXML::Stomach

deal with digestion of tokens into boxes.

LaTeXML::Document, LaTeXML::Model, LaTeXML::Rewrite

dealing with conversion of the digested boxes into XML.

LaTeXML::Definition and LaTeXML::Parameters

representation of LaTeX macros, primitives, registers and constructors.

LaTeXML::MathParser

the math parser.

LaTeXML::Global, LaTeXML::Error, LaTeXML::Object, LaTeXML::Font

other random modules.

http://search.cpan.org/search?query=latexml&mode=module

36 APPENDIX B. MODULES

LaTeXML::Object

Abstract base class for most LaTeXML objects.

Description

LaTeXML::Object serves as an abstract base class for all other objects (both
the data objects and control objects). It provides for common methods for
stringification and comparison operations to simplify coding and to beautify
error reporting.

Methods

$string = $object->stringify;

Returns a readable representation of $object, useful for debugging.

$string = $object->toString;

Returns the string content of $object; most useful for extracting a usable
string from tokens or boxes that might representing a filename or such.

$boole = $object->equals($other);

Returns whether $object and $other are equal. Should perform a deep
comparision, but the default implementation just compares for object
identity.

$boole = $object->isaToken;

Returns whether $object is an LaTeXML::Token.

$boole = $object->isaBox;

Returns whether $object is an LaTeXML::Box.

$boole = $object->isaDefinition;

Returns whether $object is an LaTeXML::Definition.

$digested = $object->beDigested;

Does whatever is needed to digest the object, and return the digested
representation. Tokens would be digested into boxes; Some objects, such
as numbers can just return themselves.

$object->beAbsorbed($document);

Do whatever is needed to absorb the $object into the $document, typi-
cally by invoking appropriate methods on the $document.

37

LaTeXML::Definition

Control sequence definitions.

Description

These represent the various executables corresponding to control sequences. See
LaTeXML::Package for the most convenient means to create them.

LaTeXML::Expandable

represents macros and other expandable control sequences that are car-
ried out in the Gullet during expansion. The results of invoking an
LaTeXML::Expandable should be a list of LaTeXML::Tokens.

LaTeXML::Primitive

represents primitive control sequences that are primarily carried out for
side effect during digestion in the LaTeXML::Stomach and for changing
the LaTeXML::State. The results of invoking a LaTeXML::Primitive, if
any, should be a list of digested items (LaTeXML::Box, LaTeXML::List or
LaTeXML::Whatsit).

LaTeXML::Register

is set up as a speciallized primitive with a getter and setter to access and
store values in the Stomach.

LaTeXML::CharDef

represents a further specialized Register for chardef.

LaTeXML::Constructor

represents control sequences that contribute arbitrary XML fragments to
the document tree. During digestion, a LaTeXML::Constuctor records
the arguments used in the invokation to produce a LaTeXML::Whatsit.
The resulting LaTeXML::Whatsit (usually) generates an XML document
fragment when absorbed by an instance of LaTeXML::Document. Addi-
tionally, a LaTeXML::Constructor may have beforeDigest and afterDigest
daemons defined which are executed for side effect, or for adding additional
boxes to the output.

More documentation needed, but see LaTeXML::Package for the main user
access to these.

Methods in general

$token = $defn->getCS;

Returns the (main) token that is bound to this definition.

38 APPENDIX B. MODULES

$string = $defn->getCSName;

Returns the string form of the token bound to this definition, taking into
account any alias for this definition.

$defn->readArguments($gullet);

Reads the arguments for this $defn from the $gullet, returning a list of
LaTeXML::Tokens.

$parameters = $defn->getParameters;

Return the LaTeXML::Parameters object representing the formal param-
eters of the definition.

@tokens = $defn->invocation(@args);

Return the tokens that would invoke the given definition with the provided
arguments. This is used to recreate the TeX code (or it’s equivalent).

$defn->invoke;

Invoke the action of the $defn. For expandable definitions, this is done
in the Gullet, and returns a list of LaTeXML::Tokens. For primitives, it
is carried out in the Stomach, and returns a list of LaTeXML::Boxes.
For a constructor, it is also carried out by the Stomach, and returns
a LaTeXML::Whatsit. That whatsit will be responsible for construct-
ing the XML document fragment, when the LaTeXML::Document invokes
$whatsit-beAbsorbed($document);>.

Primitives and Constructors also support before and after daemons, lists
of subroutines that are executed before and after digestion. These can be
useful for changing modes, etc.

More about Primitives

Primitive definitions may have lists of daemon subroutines, beforeDigest and
afterDigest, that are executed before (and before the arguments are read) and
after digestion. These should either end with return;, (), or return a list of
digested objects (LaTeXML::Box, etc) that will be contributed to the current
list.

More about Registers

Registers generally store some value in the current LaTeXML::State, but are
not required to. Like TeX’s registers, when they are digested, they expect an
optional =, and then a value of the appropriate type. Register definitions support
these additional methods:

$value = $register->valueOf(@args);

Return the value associated with the register, by invoking it’s getter
function. The additional args are used by some registers to index into a
set, such as the index to \count.

39

$register->setValue($value,@args);

Assign a value to the register, by invoking it’s setter function.

More about Constructors

A constructor has as it’s replacement a subroutine or a string pattern rep-
resenting the XML fragment it should generate. In the case of a string pat-
tern, the pattern is compiled into a subroutine on first usage by the internal
class LaTeXML::ConstructorCompiler. Like primitives, constructors may have
beforeDigest and afterDigest.

40 APPENDIX B. MODULES

LaTeXML::Global

Global exports used within LaTeXML, and in Packages.

Synopsis

use LaTeXML::Global;

Description

This module exports the various constants and constructors that are useful
throughout LaTeXML, and in Package implementations.

Global state

$STATE;

This is bound to the currently active LaTeXML::State by an instance of
LaTeXML during processing.

Tokens

$catcode = CC ESCAPE;

Constants for the category codes:

CC_BEGIN, CC_END, CC_MATH, CC_ALIGN, CC_EOL,
CC_PARAM, CC_SUPER, CC_SUB, CC_IGNORE,
CC_SPACE, CC_LETTER, CC_OTHER, CC_ACTIVE,
CC_COMMENT, CC_INVALID, CC_CS, CC_NOTEXPANDED.

[The last 2 are (apparent) extensions, with catcodes 16 and 17, respec-
tively].

$token = Token($string,$cc);

Creates a LaTeXML::Token with the given content and catcode. The
following shorthand versions are also exported for convenience:

T_BEGIN, T_END, T_MATH, T_ALIGN, T_PARAM,
T_SUB, T_SUPER, T_SPACE, T_LETTER($letter),
T_OTHER($char), T_ACTIVE($char),
T_COMMENT($comment), T_CS($cs)

$tokens = Tokens(@token);

Creates a LaTeXML::Tokens from a list of LaTeXML::Token’s

41

$tokens = Tokenize($string);

Tokenizes the $string according to the standard cattable, returning a
LaTeXML::Tokens.

$tokens = TokenizeInternal($string);

Tokenizes the $string according to the internal cattable (where @ is a
letter), returning a LaTeXML::Tokens.

@tokens = Explode($string);

Returns a list of the tokens corresponding to the characters in $string.

Numbers, etc.

$number = Number($num);

Creates a Number object representing $num.

$number = Float($num);

Creates a floating point object representing $num; This is not part of TeX,
but useful.

$dimension = Dimension($dim);

Creates a Dimension object. $num can be a string with the number and
units (with any of the usual TeX recognized units), or just a number
standing for scaled points (sp).

$mudimension = MuDimension($dim);

Creates a MuDimension object; similar to Dimension.

$glue = Glue($gluespec);

$glue = Glue($sp,$plus,$pfill,$minus,$mfill);

Creates a Glue object. $gluespec can be a string in the form that TeX
recognizes (number units optional plus and minus parts). Alternatively,
the dimension, plus and minus parts can be given separately: $pfill and
$mfill are 0 (when the $plus or $minus part is in sp) or 1,2,3 for fil, fill
or filll.

$glue = MuGlue($gluespec);

$glue = MuGlue($sp,$plus,$pfill,$minus,$mfill);

Creates a MuGlue object, similar to Glue.

$pair = Pair($num1,$num2);

Creates an object representing a pair of numbers; Not a part of TeX, but
useful for graphical objects. The two components can be any numerical
object.

42 APPENDIX B. MODULES

$pair = PairList(@pairs);

Creates an object representing a list of pairs of numbers; Not a part of
TeX, but useful for graphical objects.

Error Reporting

Fatal($message);

Signals an fatal error, printing $message along with some context. In
verbose mode a stack trace is printed.

Error($message);

Signals an error, printing $message along with some context. If in strict
mode, this is the same as Fatal(). Otherwise, it attempts to continue
processing..

Warn($message);

Prints a warning message along with a short indicator of the input context,
unless verbosity is quiet.

NoteProgress($message);

Prints $message unless the verbosity level below 0.

Generic functions

Stringify($object);

Returns a short string identifying $object, for debugging. Works on any
values and objects, but invokes the stringify method on blessed objects.
More informative than the default perl conversion to a string.

ToString($object);

Converts $object to string; most useful for Tokens or Boxes where the
string content is desired. Works on any values and objects, but invokes
the toString method on blessed objects.

Equals($a,$b);

Compares the two objects for equality. Works on any values and objects,
but invokes the equals method on blessed objects, which does a deep
comparison of the two objects.

43

LaTeXML::Error

Internal Error reporting code.

Description

LaTeXML::Error does some simple stack analysis to generate more informa-
tive, readable, error messages for LaTeXML. Its routines are used by the error
reporting methods from LaTeXML::Global, namely Warn, Error and Fatal.

No user serviceable parts inside. No symbols are exported.

Functions

$string = LaTeXML::Error::generateMessage($typ,$msg,$lng,@more);

Constructs an error or warning message based on the current stack and
the current location in the document. $typ is a short string characterizing
the type of message, such as ”Error”. $msg is the error message itself. If
$lng is true, will generate a more verbose message; this also uses the
VERBOSITY set in the $STATE. Longer messages will show a trace of the
objects invoked on the stack, @more are additional strings to include in
the message.

$string = LaTeXML::Error::stacktrace;

Return a formatted string showing a trace of the stackframes up until this
function was invoked.

@objects = LaTeXML::Error::objectStack;

Return a list of objects invoked on the stack. This procedure only con-
siders those stackframes which involve methods, and the objects are those
(unique) objects that the method was called on.

$line = LaTeXML::Error:line in file($file);

This returns the line number in $file that is currently being executed,
assuming that some stackframe is invoking code defined in that file.

44 APPENDIX B. MODULES

LaTeXML::Package

Support for package implementations and document customization.

Synopsis

This package defines and exports most of the procedures users will need to
customize or extend LaTeXML. The LaTeXML implementation of some package
might look something like the following, but see the installed LaTeXML/Package
directory for realistic examples.

use LaTeXML::Package;
use strict;
#
Load "anotherpackage"
RequirePackage(’anotherpackage’);
#
A simple macro, just like in TeX
DefMacro(’\thesection’, ’\thechapter.\roman{section}’);
#
A constructor defines how a control sequence generates XML:
DefConstructor(’\thanks{}’, "<ltx:thanks>#1</ltx:thanks>");
#
And a simple environment ...
DefEnvironment(’{abstract}’,’<abstract>#body</abstract>’);
#
A math symbol \Real to stand for the Reals:
DefMath(’\Real’, "\x{211D}", role=>’ID’);
#
Or a semantic floor:
DefMath(’\floor{}’,’\left\lfloor#1\right\rfloor’);
#
More esoteric ...
Use a RelaxNG schema
RelaxNGSchema("MySchema");
Or use a special DocType if you have to:
DocType("rootelement","-//Your Site//Your DocType",’your.dtd’,
prefix=>"http://whatever/");
#
Allow sometag elements to be automatically closed if needed
Tag(’prefix:sometag’, autoClose=>1);
#
Don’t forget this, so perl knows the package loaded.
1;

45

Description

To provide a LaTeXML-specific version of a LaTeX package mypackage.sty
or class myclass.cls (so that eg. \usepackage{mypackage} works), you cre-
ate the file mypackage.sty.ltxml or myclass.cls.ltxml and save it in the
searchpath (current directory, or one of the directories given to the –path op-
tion, or possibly added to the variable SEARCHPATHS). Similarly, to pro-
vide document-specific customization for, say, mydoc.tex, you would create the
file mydoc.latexml (typically in the same directory). However, in the first
cases, mypackage.sty.ltxml are loaded instead of mypackage.sty, while a file
like mydoc.latexml is loaded in addition to mydoc.tex. In either case, you’ll
use LaTeXML::Package; to import the various declarations and defining forms
that allow you to specify what should be done with various control sequences,
whether there is special treatment of certain document elements, and so forth.
Using LaTeXML::Package also imports the functions and variables defined in
LaTeXML::Global, so see that documentation as well.

Since LaTeXML attempts to mimic TeX, a familiarity with TeX’s processing
model is also helpful. Additionally, it is often useful, when implementing non-
trivial behaviour, to think TeX-like.

Many of the following forms take code references as arguments or options.
That is, either a reference to a defined sub, \&somesub, or an anonymous func-
tion sub { ... }. To document these cases, and the arguments that are passed in
each case, we’ll use a notation like CODE($token,..).

Control Sequences

Many of the following forms define the behaviour of control sequences. In TeX
you’ll typically only define macros. In LaTeXML, we’re effectively redefining
TeX itself, so we define macros as well as primitives, registers, constructors and
environments. These define the behaviour of these commands when processed
during the various phases of LaTeX’s immitation of TeX’s digestive tract.

The first argument to each of these defining forms (DefMacro, DefPrimive,
etc) is a prototype consisting of the control sequence being defined along with
the specification of parameters required by the control sequence. Each parame-
ter describes how to parse tokens following the control sequence into arguments
or how to delimit them. To simplify coding and capture common idioms in
TeX/LaTeX programming, latexml’s parameter specifications are more expres-
sive than TeX’s \def or LaTeX’s \newcommand. Examples of the prototypes for
familiar TeX or LaTeX control sequences are:

DefConstructor(’\usepackage[]{}’,...
DefPrimitive(’\multiply Variable SkipKeyword:by Number’,..
DefPrimitive(’\newcommand OptionalMatch:* {Token}[][]{}’, ...

Control Sequence Parameters The general syntax for parameter for a con-
trol sequence is something like

46 APPENDIX B. MODULES

OpenDelim? Modifier? Type (: value (| value)*)? CloseDelim?

The enclosing delimiters, if any, are either {} or [], affect the way the ar-
gument is delimited. With {}, a regular TeX argument (token or sequence
balanced by braces) is read before parsing according to the type (if needed).
With [], a LaTeX optional argument is read, delimited by (non-nested) square
brackets.

The modifier can be either Optional or Skip, allowing the argument to be
optional. For Skip, no argument is contributed to the argument list.

The shorthands {} and [] default the type to Plain and reads a normal TeX
argument or LaTeX default argument.

The predefined argument types are as follows.

Plain, Semiverbatim

Reads a standard TeX argument being either the next token, or if the next
token is an {, the balanced token list. In the case of Semiverbatim, many
catcodes are disabled, which is handy for URL’s, labels and similar.

Token, XToken

Read a single TeX Token. For XToken, if the next token is expandable,
it is repeatedly expanded until an unexpandable token remains, which is
returned.

Number, Dimension, Glue or MuGlue

Read an Object corresponding to Number, Dimension, Glue or MuGlue,
using TeX’s rules for parsing these objects.

Until:match

Reads tokens until a match to the tokens match is found, returning the to-
kens preceding the match. This corresponds to TeX delimited arguments.

UntilBrace

Reads tokens until the next open brace {. This corresponds to the peculiar
TeX construct \def\foo#{....

Match:match(|match)*, Keyword:match(|match)*

Reads tokens expecting a match to one of the token lists match, returning
the one that matches, or undef. For Keyword, case and catcode of the
matches are ignored. Additionally, any leading spaces are skipped.

Balanced

Read tokens until a closing }, but respecting nested {} pairs.

Variable

Reads a token, expanding if necessary, and expects a control sequence
naming a writable register. If such is found, it returns an array of the
corresponding definition object, and any arguments required by that def-
inition.

47

SkipSpaces

Skips any space tokens, but contributes nothing to the argument list.

Control of Scoping Most defining commands accept an option to control how
the definition is stored, scope=>$scope, where $scope can be c<’global’>for
global definitions, ’local’, to be stored in the current stack frame, or a string
naming a scope. A scope saves a set of definitions and values that can be
activated at a later time.

Particularly interesting forms of scope are those that get automatically ac-
tivated upon changes of counter and label. For example, definitions that have
scope=>’section:1.1’ will be activated when the section number is ”1.1”,
and will be deactivated when the section ends.

Macros

DefMacro($prototype,$string |$tokens |$code,%options);
Defines the macro expansion for $prototype. If a $string is supplied,
it will be tokenized at definition time, and any macro arguments will
be substituted for parameter indicators (eg #1) at expansion time; the
result is used as the expansion of the control sequence. The only option,
other than scope, is isConditional which should be true, for conditional
control sequences (TeX uses these to keep track of conditional nesting
when skipping to \else or \fi).

If defined by $code, the form is CODE($gullet,@args) and it must return
a list of LaTeXML::Token’s.

DefMacroI($cs,$paramlist,$string |$tokens |$code,%options);
Internal form of DefMacro where the control sequence and parameter
list have already been parsed; useful for definitions from within code.
Also, slightly more efficient for macros with no arguments (use undef for
$paramlist).

Primitives

DefPrimitive($prototype,CODE($stomach,@args),%options);

Define a primitive control sequence. These are usually done for side effect
and so CODE should end with return;, but can also return a list of
digested items.

The only option is for the special case: isPrefix=>1 is used for assign-
ment prefixes (like \global).

DefPrimitiveI($cs,$paramlist,CODE($stomach,@args),%options);

Internal form of DefPrimitive where the control sequence and parameter
list have already been parsed; useful for definitions from within code.

48 APPENDIX B. MODULES

DefRegister($prototype,$value,%options);

Defines a register with the given initial value (a Number, Dimension,
Glue, MuGlue or Tokens — I haven’t handled Box’s yet). Usually, the
$prototype is just the control sequence, but registers are also handled by
prototypes like \count{Number}. DefRegister arranges that the register
value can be accessed when a numeric, dimension, ... value is being read,
and also defines the control sequence for assignment.

Options are

readonly

specifies if it is not allowed to change this value.

getter=>CODE(@args) =item setter=>CODE($value,@args)
By default the value is stored in the State’s Value table under a name
concatenating the control sequence and argument values. These op-
tions allow other means of fetching and storing the value.

DefRegisterI($cs,$paramlist,$value,%options);

Internal form of DefRegister where the control sequence and parameter
list have already been parsed; useful for definitions from within code.

Constructors

DefConstructor($prototype,$xmlpattern |$code,%options);
The Constructor is where LaTeXML really starts getting interesting; in-
voking the control sequence will generate an arbitrary XML fragment in
the document tree. More specifically: during digestion, the arguments
will be read and digested, creating a LaTeXML::Whatsit to represent the
object. During absorbtion by the LaTeXML::Document, the Whatsit will
generate the XML fragment according to the replacement $xmlpattern,
or by executing CODE.

The $xmlpattern is simply a bit of XML as a string with certain substi-
tutions to be made. The substitutions are of the following forms:

If code is supplied, the form is CODE($document,@args,$properties)

#1, #2 ... #name
These are replaced by the corresponding argument (for #1) or prop-
erty (for #name) stored with the Whatsit. Each are turned into
a string when it appears as in an attribute position, or recursively
processed when it appears as content.

&function(@args)

Another form of substituted value is prefixed with & which invokes a
function. For example, &func(#1) would invoke the function func
on the first argument to the control sequence; what it returns will be
inserted into the document.

49

?COND(pattern) or ?COND(ifpattern)(elsepattern)

Patterns can be conditionallized using this form. The COND is any
of the above expressions, considered true if the result is non-empty.
Thus ?#1(<foo/>) would add the empty element foo if the first
argument were given.

^

If the constuctor begins with ^, the XML fragment is allowed to float
up to a parent node that is allowed to contain it, according to the
Document Type.

The Whatsit property font is defined by default. Additional properties
body and trailer are defined when captureBody is true, or for envi-
ronments. By using $whatsit->setProperty(key=>$value); within
afterDigest, or by using the properties option, other properties can be
added.

DefConstructor options are

mode=>(text|display math| inline math)
Changes to this mode during digestion.

bounded=>boolean
If true, TeX grouping (ie. {}) is enforced around this invocation.

requireMath=>boolean

forbidMath=>boolean
These specify whether the given constructor can only appear, or can-
not appear, in math mode.

font=>{fontspec...}
Specifies the font to be set by this invocation. See /MergeFont If
the font change is to only apply to this construct, you would also use
<bounded=1>>.

reversion=>$texstring or CODE($whatsit,#1,#2,...)
Specifies the reversion of the invocation back into TeX tokens (if
the default reversion is not appropriate). The $textstring string can
include #1,#2... The CODE is called with the $whatsit and digested
arguments.

properties=>{prop=>value,...} or CODE($stomach,#1,#2...)
This option supplies additional properties to be set on the generated
Whatsit. In the first form, the values can be of any type, but (1) if it
is a code references, it takes the same args ($stomach,#1,#2,...) and
should return a value. and (2) if the value is a string, occurances of
#1 (etc) are replaced by the corresponding argument. In the second
form, the code should return a hash of properties.

http://search.cpan.org/search?query=/MergeFont&mode=module

50 APPENDIX B. MODULES

beforeDigest=>CODE($stomach)
This option supplies a Daemon to be executed during digestion just
before the Whatsit is created. The CODE should either return noth-
ing (return;) or a list of digested items (Box’s,List,Whatsit). It can
thus change the State and/or add to the digested output.

afterDigest=>CODE($stomach,$whatsit)
This option supplies a Daemon to be executed during digestion just
after the Whatsit is created. it should either return nothing (return;)
or digested items. It can thus change the State, modify the Whatsit,
and/or add to the digested output.

beforeConstruct=>CODE($document,$whatsit)
Supplies CODE to execute before constructing the XML (generated
by $replacement).

afterConstruct=>CODE($document,$whatsit)
Supplies CODE to execute after constructing the XML.

captureBody=>boolean
if true, arbitrary following material will be accumulated into a ‘body’
until the current grouping level is reverted. This body is available as
the body property of the Whatsit. This is used by environments and
math.

alias=>$control sequence
Provides a control sequence to be used when reverting Whatsit’s
back to Tokens, in cases where it isn’t the command used in the
$prototype.

nargs=>$nargs
This gives a number of args for cases where it can’t be infered directly
from the $prototype (eg. when more args are explictly read by
Daemons).

scope=>$scope
See /scope.

DefConstructorI($cs,$paramlist,$xmlpattern |$code,%options);
Internal form of DefConstructor where the control sequence and param-
eter list have already been parsed; useful for definitions from within code.

DefMath($prototype,$tex,%options);

A common shorthand constructor; it defines a control sequence that cre-
ates a mathematical object, such as a symbol, function or operator ap-
plication. The options given can effectively create semantic macros that
contribute to the eventual parsing of mathematical content. In particular,
it generates an XMDual using the replacement $tex for the presentation.
The content information is drawn from the name and options

These DefConstructor options also apply:

http://search.cpan.org/search?query=/scope&mode=module

51

reversion, alias, beforeDigest, afterDigest,
beforeConstruct, afterConstruct and scope.

Additionally, it accepts

style=>astyle
adds a style attribute to the object.

name=>aname
gives a name attribute for the object

omcd=>cdname
gives the OpenMath content dictionary that name is from.

role=>grammatical role
adds a grammatical role attribute to the object; this specifies the
grammatical role that the object plays in surrounding expressions.
This direly needs documentation!

font=>{fontspec}
Specifies the font to be used for when creating this object. See
/MergeFont.

scriptpos=>boolean
Controls whether any sub and super-scripts will be stacked over or
under this object, or whether they will appear in the usual position.
WRONG: Redocument this!

operator role=>grammatical role

operator scriptpos=>boolean
These two are similar to role and scriptpos, but are used in unusual
cases. These apply to the given attributes to the operator token in
the content branch.

nogroup=>boolean
Normally, these commands are digested with an implicit grouping
around them, so that changes to fonts, etc, are local. Providing
<noggroup=1>>inhibits this.

DefMathI($cs,$paramlist,$tex,%options);

Internal form of DefMath where the control sequence and parameter list
have already been parsed; useful for definitions from within code.

DefEnvironment($prototype,$replacement,%options);

Defines an Environment that generates a specific XML fragment. The
$replacement is of the same form as that for DefConstructor, but will
generally include reference to the #body property. Upon encountering
a \begin{env}: the mode is switched, if needed, else a new group is
opened; then the environment name is noted; the beforeDigest daemon is

http://search.cpan.org/search?query=/MergeFont&mode=module

52 APPENDIX B. MODULES

run. Then the Whatsit representing the begin command (but ultimately
the whole environment) is created and the afterDigestBegin daemon is
run. Next, the body will be digested and collected until the balancing
\end{env}. Then, any afterDigest daemon is run, the environment is
ended, finally the mode is ended or the group is closed. The body and
\end{env} whatsit are added to the \begin{env}’s whatsit as body and
trailer, respectively.

It shares options with DefConstructor:

mode, requireMath, forbidMath, properties, nargs,
font, beforeDigest, afterDigest, beforeConstruct,
afterConstruct and scope.

Additionally, afterDigestBegin is effectively an afterDigest for the
\begin{env} control sequence.

DefEnvironmentI($name,$paramlist,$replacement,%options);

Internal form of DefEnvironment where the control sequence and param-
eter list have already been parsed; useful for definitions from within code.

Class and Packages

RequirePackage($package,%options);

Finds and loads a package implementation (usually *.sty.ltxml, unless
raw is specified) for the required $package. The options are:

type=>type specifies the file type (default sty.

options=>[...] specifies a list of package options.

raw=>1 specifies that it is allowable to try to read a raw TeX
style file.

LoadClass($class,%options);

Finds and loads a class definition (usually *.cls.ltxml). The only option
is

options=>[...] specifies a list of class options.

FindFile($name,%options);

Find an appropriate file with the given $name in the current directories in
SEARCHPATHS. If a file ending with .ltxml is found, it will be preferred.
The options are:

type=>type specifies the file type (default sty.

raw=>1 specifies that it is allowable to try to read a raw TeX
style file.

53

DeclareOption($option,$code);

Declares an option for the current package or class. The $code can be
a string or Tokens (which will be macro expanded), or can be a code
reference which is treated as a primitive.

If a package or class wants to accomodate options, it should start with
one or more DeclareOptions, followed by ProcessOptions().

PassOptions($name,$ext,@options);

Causes the given @options (strings) to be passed to the package (if $ext
is sty) or class (if $ext is cls) named by $name.

ProcessOptions();

Processes the options that have been passed to the current package or class
in a fashion similar to LaTeX. If the keyword inorder=>1 is given, the
options are processed in the order they were used, like ProcessOptions*.

ExecuteOptions(@options);

Process the options given explicitly in @options.

Counters and IDs

NewCounter($ctr,$within,%options);

Defines a new counter, like LaTeX’s \newcounter, but extended. It defines
a counter that can be used to generate reference numbers, and defines
\the$ctr, etc. It also defines an ”uncounter” which can be used to generate
ID’s (xml:id) for unnumbered objects. $ctr is the name of the counter. If
defined, $within is the name of another counter which, when incremented,
will cause this counter to be reset. The options are

idprefix Specifies a prefix to be used when using this counter
to generate ID’s.

nested Not sure that this is even sane.

$num = CounterValue($ctr);

Fetches the value associated with the counter $ctr.

$tokens = StepCounter($ctr);

Like \stepcounter, steps the counter and returns the expansion of \the$ctr.
Usually you should use RefStepCounter($ctr) instead.

$keys = RefStepCounter($ctr);

Like \refstepcounter, it steps the counter and returns the keys refnum=$refnum,
id=>$id>, making it suitable for use in a properties option to construc-
tors. The id is generated in parallel with the reference number to assist
debugging.

54 APPENDIX B. MODULES

$keys = RefStepID($ctr);

Analogous to RefStepCounter, but only steps the ”uncounter”, and re-
turns only the id; This is useful for unnumbered cases of objects that
normally get both a refnum and id.

ResetCounter($ctr);

Resets the counter $ctr to zero.

GenerateID($document,$node,$whatsit,$prefix);

Generates an ID for nodes during the construction phase, useful for cases
where the counter based scheme is inappropriate. The calling pattern
makes it appropriate for use in Tag, as in Tag(’ltx:para’,sub { Gener-
ateID(@ ,’p’); })
If $node doesn’t already have an xml:id set, it computes an appropriate
id by concatenating the xml:id of the closest ancestor with an id (if any),
the prefix and a unique counter.

Document Model

Constructors define how TeX markup will generate XML fragments, but the
Document Model is used to control exactly how those fragments are assembled.

Tag($tag,%properties);

Declares properties of elements with the name $tag.

The recognized properties are:

autoOpen=>boolean
Specifies whether this $tag can be automatically opened if needed to
insert an element that can only be contained by $tag. This property
can help match the more SGML-like LaTeX to XML.

autoClose=>boolean
Specifies whether this $tag can be automatically closed if needed to
close an ancestor node, or insert an element into an ancestor. This
property can help match the more SGML-like LaTeX to XML.

afterOpen=>CODE($document,$box)
Provides CODE to be run whenever a node with this $tag is opened.
It is called with the document being constructed, and the initiating
digested object as arguments. It is called after the node has been
created, and after any initial attributes due to the constructor (passed
to openElement) are added.

afterClose=>CODE($document,$box)
Provides CODE to be run whenever a node with this $tag is closed.
It is called with the document being constructed, and the initiating
digested object as arguments.

55

RelaxNGSchema($schemaname);

Specifies the schema to use for determining document model. You can
leave off the extension; it will look for .rng, and maybe eventually, .rnc
once that is implemented.

RegisterNamespace($prefix,$URL);

Declares the $prefix to be associated with the given $URL. These prefixes
may be used in ltxml files, particularly for constructors, xpath expressions,
etc. They are not necessarily the same as the prefixes that will be used in
the generated document (See DocType).

DocType($rootelement,$publicid,$systemid,%namespaces);

Declares the expected rootelement, the public and system ID’s of the
document type to be used in the final document. The hash %namespaces
specifies the namespaces prefixes that are expected to be found in the
DTD, along with each associated namespace URI. Use the prefix #default
for the default namespace (ie. the namespace of non-prefixed elements in
the DTD).

The prefixes defined for the DTD may be different from the prefixes used
in implementation CODE (eg. in ltxml files; see RegisterNamespace). The
generated document will use the namespaces and prefixes defined for the
DTD.

Document Rewriting

During document construction, as each node gets closed, the text content gets
simplfied. We’ll call it applying ligatures, for lack of a better name.

DefLigature($regexp,%options);

Apply the regular expression (given as a string: ”/fa/fa/” since it will be
converted internally to a true regexp), to the text content. The only option
is fontTest=CODE($font); if given, then the substitution is applied only
when fontTest returns true.

Predefined Ligatures combine sequences of ”.” or single-quotes into ap-
propriate Unicode characters.

DefMathLigature(CODE($document,@nodes));

CODE is called on each sequence of math nodes at a given level. If they
should be replaced, return a list of ($n,$string,%attributes) to replace
the text content of the first node with $string content and add the given
attributes. The next $n-1 nodes are removed. If no replacement is called
for, CODE should return undef.

Predefined Math Ligatures combine letter or digit Math Tokens (XMTok)
into multicharacter symbols or numbers, depending on the font (non math
italic).

56 APPENDIX B. MODULES

After document construction, various rewriting and augmenting of the doc-
ument can take place.

DefRewrite(%specification);

DefMathRewrite(%specification);

These two declarations define document rewrite rules that are applied to
the document tree after it has been constructed, but before math parsing,
or any other postprocessing, is done. The %specification consists of a
seqeuence of key/value pairs with the initial specs successively narrowing
the selection of document nodes, and the remaining specs indicating how
to modify or replace the selected nodes.

The following select portions of the document:

label =>$label
Selects the part of the document with label=$label

scope =>$scope
The $scope could be ”label:foo” or ”section:1.2.3” or something sim-
ilar. These select a subtree labelled ’foo’, or a section with reference
number ”1.2.3”

xpath =>$xpath
Select those nodes matching an explicit xpath expression.

match =>$TeX
Selects nodes that look like what the processing of $TeX would pro-
duce.

regexp=>$regexp
Selects text nodes that match the regular expression.

The following act upon the selected node:

attributes =>$hash
Adds the attributes given in the hash reference to the node.

replace =>$replacement
Interprets the $replacement as TeX code to generate nodes that will
replace the selected nodes.

Mid-Level support

$tokens = Expand($tokens);

Expands the given $tokens according to current definitions.

$boxes = Digest($tokens);

Processes and digestes the $tokens. Any arguments needed by control
sequences in $tokens must be contained within the $tokens itself.

57

@tokens = Invocation($cs,@args);

Constructs a sequence of tokens that would invoke the token $cs on the
arguments.

RawTeX(’... tex code ...’);

RawTeX is a convenience function for including chunks of raw TeX (or
LaTeX) code in a Package implementation. It is useful for copying portions
of the normal implementation that can be handled simply using macros
and primitives.

Let($token1,$token2);

Gives $token1 the same ‘meaning’ (definition) as $token2; like TeX’s \let.

Argument Readers

ReadParameters($gullet,$spec);

Reads from $gullet the tokens corresponding to $spec (a Parameters
object).

DefParameterType($type,CODE($gullet,@values),%options);

Defines a new Parameter type, $type, with CODE for its reader.

Options are:

reversion=>CODE($arg,@values);
This CODE is responsible for converting a previously parsed argu-
ment back into a sequence of Token’s.

optional=>boolean
whether it is an error if no matching input is found.

novalue=>boolean
whether the value returned should contribute to argument lists, or
simply be passed over.

semiverbatim=>boolean
whether the catcode table should be modified before reading tokens.

DefColumnType($proto,$expansion);

Defines a new column type for tabular and arrays. $proto is the proto-
type for the pattern, analogous to the pattern used for other definitions,
except that macro being defined is a single character. The $expansion
is a string specifying what it should expand into, typically more verbose
column specification.

StartSemiVerbatim(); ... ; EndSemiVerbatim();

Reads an argument delimted by braces, while disabling most TeX catcodes.

58 APPENDIX B. MODULES

Access to State

$value = LookupValue($name);

Lookup the current value associated with the the string $name.

AssignValue($name,$value,$scope);

Assign $value to be associated with the the string $name, according to the
given scoping rule.

Values are also used to specify most configuration parameters (which can
therefor also be scoped). The recognized configuration parameters are:

VERBOSITY : the level of verbosity for debugging
output, with 0 being default.

STRICT : whether errors (eg. undefined macros)
are fatal.

INCLUDE_COMMENTS : whether to preserve comments in the
source, and to add occasional line
number comments. (Default true).

PRESERVE_NEWLINES : whether newlines in the source should
be preserved (not 100% TeX-like).
By default this is true.

SEARCHPATHS : a list of directories to search for
sources, implementations, etc.

PushValue($type,$name,@values);

This is like AssignValue, but pushes values onto the end of the value,
which should be a LIST reference. Scoping is not handled here (yet?), it
simply pushes the value onto the last binding of $name.

UnshiftValue($type,$name,@values);

Similar to PushValue, but pushes a value onto the front of the values,
which should be a LIST reference.

$value = LookupCatcode($char);

Lookup the current catcode associated with the the character $char.

AssignCatcode($char,$catcode,$scope);

Set $char to have the given $catcode, with the assignment made accord-
ing to the given scoping rule.

This method is also used to specify whether a given character is active in
math mode, by using math:$char for the character, and using a value of
1 to specify that it is active.

$meaning = LookupMeaning($token);

Looks up the current meaning of the given $token which may be a Defini-
tion, another token, or the token itself if it has not otherwise been defined.

59

$defn = LookupDefinition($token);

Looks up the current definition, if any, of the $token.

InstallDefinition($defn);

Install the Definition $defn into $STATE under its control sequence.

Low-level Functions

CleanLabel($label,$prefix);

Cleans a $label of disallowed characters, and prepends $prefix (or LABEL,
if none given).

CleanIndexKey($key);

Cleans an index key, so it can be used as an ID.

CleanBibKey($key);

Cleans a bibliographic citation key, so it can be used as an ID.

CleanURL($url);

Cleans a url.

UTF($code);

Generates a UTF character, handy for the the 8 bit characters. For ex-
ample, UTF(0xA0) generates the non-breaking space.

MergeFont(%style);

Set the current font by merging the font style attributes with the current
font. The attributes and likely values (the values aren’t required to be in
this set):

family : serif, sansserif, typewriter, caligraphic,
fraktur, script

series : medium, bold
shape : upright, italic, slanted, smallcaps
size : tiny, footnote, small, normal, large,

Large, LARGE, huge, Huge
color : any named color, default is black

Some families will only be used in math. This function returns nothing so
it can be easily used in beforeDigest, afterDigest.

@tokens = roman($number);

Formats the $number in (lowercase) roman numerals, returning a list of
the tokens.

@tokens = Roman($number);

Formats the $number in (uppercase) roman numerals, returning a list of
the tokens.

60 APPENDIX B. MODULES

LaTeXML::Parameters

Formal parameters, including LaTeXML::Parameter.

Description

Provides a representation for the formal parameters of LaTeXML::Definitions:

LaTeXML::Parameter

represents an individual parameter.

Parameters Methods

$parameters = parseParameters($prototype,$for);

Parses a string for a sequence of parameter specifications. Each specifica-
tion should be of the form

{} reads a regular TeX argument, a sequence of
tokens delimited by braces, or a single token.

{spec} reads a regular TeX argument, then reparses it
to match the given spec. The spec is parsed
recursively, but usually should correspond to
a single argument.

[spec] reads an LaTeX-style optional argument. If the
spec is of the form Default:stuff, then stuff
would be the default value.

Type Reads an argument of the given type, where either
Type has been declared, or there exists a ReadType
function accessible from LaTeXML::Package::Pool.

Type:value, or Type:value1:value2... These forms
pass additional Tokens to the reader function.

OptionalType Similar to Type, but it is not considered
an error if the reader returns undef.

SkipType Similar to OptionalType, but the value returned
from the reader is ignored, and does not occupy a
position in the arguments list.

@parameters = $parameters->getParameters;

Return the list of LaTeXML::Parameter contained in $parameters.

@tokens = $parameters->revertArguments(@args);

Return a list of LaTeXML::Token that would represent the arguments
such that they can be parsed by the Gullet.

61

@args = $parameters->readArguments($gullet,$fordefn);

Read the arguments according to this $parameters from the $gullet.
This takes into account any special forms of arguments, such as optional,
delimited, etc.

@args = $parameters->readArgumentsAndDigest($stomach,$fordefn);

Reads and digests the arguments according to this $parameters, in se-
quence. this method is used by Constructors.

62 APPENDIX B. MODULES

LaTeXML::State

Stores the current state of processing.

Description

A LaTeXML::State object stores the current state of processing. It recording
catcodes, variables values, definitions and so forth, as well as mimicing TeX’s
scoping rules.

Access to State and Processing

$STATE->getStomach;

Returns the current Stomach used for digestion.

$STATE->getModel;

Returns the current Model representing the document model.

Scoping

The assignment methods, described below, generally take a $scope argument,
which determines how the assignment is made. The allowed values and thier
implications are:

global : global assignment.
local : local assignment, within the current grouping.
undef : global if \global preceded, else local (default)
<name> : stores the assignment in a ‘scope’ which

can be loaded later.

If no scoping is specified, then the assignment will be global if a preceding
\global has set the global flag, otherwise the value will be assigned within the
current grouping.

$STATE->pushFrame;

Starts a new level of grouping. Note that this is lower level than \bgroup;
See LaTeXML::Stomach.

$STATE->popFrame;

Ends the current level of grouping. Note that this is lower level than
\egroup; See LaTeXML::Stomach.

$STATE->setPrefix($prefix);

Sets a prefix (eg. global for \global, etc) for the next operation, if
applicable.

$STATE->clearPrefixes;

Clears any prefixes.

63

Values

$value = $STATE->lookupValue($name);

Lookup the current value associated with the the string $name.

$STATE->assignValue($name,$value,$scope);

Assign $value to be associated with the the string $name, according to the
given scoping rule.

Values are also used to specify most configuration parameters (which can
therefor also be scoped). The recognized configuration parameters are:

VERBOSITY : the level of verbosity for debugging
output, with 0 being default.

STRICT : whether errors (eg. undefined macros)
are fatal.

INCLUDE_COMMENTS : whether to preserve comments in the
source, and to add occasional line
number comments. (Default true).

PRESERVE_NEWLINES : whether newlines in the source should
be preserved (not 100% TeX-like).
By default this is true.

SEARCHPATHS : a list of directories to search for
sources, implementations, etc.

$STATE->pushValue($name,$value);

This is like ->assign, but pushes a value onto the end of the stored value,
which should be a LIST reference. Scoping is not handled here (yet?), it
simply pushes the value onto the last binding of $name.

$boole = $STATE->isValuebound($type,$name,$frame);

Returns whether the value $name is bound. If $frame is given, check
whether it is bound in the $frame-th frame, with 0 being the top frame.

Category Codes

$value = $STATE->lookupCatcode($char);

Lookup the current catcode associated with the the character $char.

$STATE->assignCatcode($char,$catcode,$scope);

Set $char to have the given $catcode, with the assignment made accord-
ing to the given scoping rule.

This method is also used to specify whether a given character is active in
math mode, by using math:$char for the character, and using a value of
1 to specify that it is active.

64 APPENDIX B. MODULES

Definitions

$defn = $STATE->lookupMeaning($token);

Get the ”meaning” currently associated with $token, either the definition
(if it is a control sequence or active character) or the token itself if it
shouldn’t be executable. (See LaTeXML::Definition)

$STATE->assignMeaning($token,$defn,$scope);

Set the definition associated with $token to $defn. If $globally is true,
it makes this the global definition rather than bound within the current
group. (See LaTeXML::Definition, and LaTeXML::Package)

$STATE->installDefinition($definition, $scope);

Install the definition into the current stack frame under its normal control
sequence.

Named Scopes

Named scopes can be used to set variables or redefine control sequences within
a scope other than the standard TeX grouping. For example, the LaTeX imple-
mentation will automatically activate any definitions that were defined with a
named scope of, say ”section:4”, during the portion of the document that has
the section counter equal to 4. Similarly, a scope named ”label:foo” will be
activated in portions of the document where \label{foo} is in effect.

$STATE->activateScope($scope);

Installs any definitions that were associated with the named $scope. Note
that these are placed in the current grouping frame and will disappear
when that grouping ends.

$STATE->deactivateScope($scope);

Removes any definitions that were associated with the named $scope.
Normally not needed, since a scopes definitions are locally bound anyway.

$sp = $STATE->convertUnit($unit);

Converts a TeX unit of the form ’10em’ (or whatever TeX unit) into scaled
points. (Defined here since in principle it could track the size of ems and
so forth (but currently doesn’t))

65

LaTeXML::Token

Representation of a token, and LaTeXML::Tokens, representing lists of tokens.

Description

This module defines Tokens (LaTeXML::Token, LaTeXML::Tokens) that get cre-
ated during tokenization and expansion.

A LaTeXML::Token represents a TeX token which is a pair of a character or
string and a category code. A LaTeXML::Tokens is a list of tokens (and also
implements the API of a LaTeXML::Mouth so that tokens can be read from a
list).

Common methods

The following methods apply to all objects.

@tokens = $object->unlist;

Return a list of the tokens making up this $object.

$string = $object->toString;

Return a string representing $object.

Token methods

The following methods are specific to LaTeXML::Token.

$string = $token->getCSName;

Return the string or character part of the $token; for the special cate-
gory codes, returns the standard string (eg. T BEGIN-getCSName>returns
”{”).

$string = $token->getString;

Return the string or character part of the $token.

$code = $token->getCharcode;

Return the character code of the character part of the $token, or 256 if
it is a control sequence.

$code = $token->getCatcode;

Return the catcode of the $token.

$defn = $token->getDefinition;

Return the current definition associated with $token in $STATE, or undef
if none.

66 APPENDIX B. MODULES

Tokens methods

The following methods are specific to LaTeXML::Tokens.

$tokenscopy = $tokens->clone;

Return a shallow copy of the $tokens. This is useful before reading from
a LaTeXML::Tokens.

$token = $tokens->readToken;

Returns (and remove) the next token from $tokens. This is part of the
public API of LaTeXML::Mouth so that a LaTeXML::Tokens can serve as
a LaTeXML::Mouth.

67

LaTeXML::Box

Representations of digested objects.

Description

These represent various kinds of digested objects

LaTeXML::Box

represents text in a particular font;

LaTeXML::MathBox

represents a math token in a particular font;

LaTeXML::List

represents a sequence of digested things in text;

LaTeXML::MathList

represents a sequence of digested things in math;

LaTeXML::Whatsit

represents a digested object that can generate arbitrary elements in the
XML Document.

Common Methods

All these classes extend LaTeXML::Object and so implement the stringify
and equals operations.

$font = $digested->getFont;

Returns the font used by $digested.

$boole = $digested->isMath;

Returns whether $digested was created in math mode.

@boxes = $digested->unlist;

Returns a list of the boxes contained in $digested. It is also defined for
the Boxes and Whatsit (which just return themselves) so they can stand-in
for a List.

$string = $digested->toString;

Returns a string representing this $digested.

$string = $digested->revert;

Reverts the box to the list of Tokens that created (or could have created)
it.

68 APPENDIX B. MODULES

$string = $digested->getLocator;

Get a string describing the location in the original source that gave rise
to $digested.

$digested->beAbsorbed($document);

$digested should get itself absorbed into the $document in whatever way
is apppropriate.

Box Methods

The following methods are specific to LaTeXML::Box and LaTeXML::MathBox.

$string = $box->getString;

Returns the string part of the $box.

Whatsit Methods

Note that the font is stored in the data properties under ’font’.

$defn = $whatsit->getDefinition;

Returns the LaTeXML::Definition responsible for creating the $whatsit.

$value = $whatsit->getProperty($key);

Returns the value associated with $key in the $whatsit’s property list.

$whatsit->setProperty($key,$value);

Sets the $value associated with the $key in the $whatsit’s property list.

$props = $whatsit->getProperties();

Returns the hash of properties stored on this Whatsit. (Note that this
hash is modifiable).

$props = $whatsit->setProperties(%keysvalues);

Sets several properties, like setProperty.

$list = $whatsit->getArg($n);

Returns the $n-th argument (starting from 1) for this $whatsit.

@args = $whatsit->getArgs;

Returns the list of arguments for this $whatsit.

$whatsit->setArgs(@args);

Sets the list of arguments for this $whatsit to @args (each arg should be
a LaTeXML::List or LaTeXML::MathList).

69

$list = $whatsit->getBody;

Return the body for this $whatsit. This is only defined for environments
or top-level math formula. The body is stored in the properties under
’body’.

$whatsit->setBody(@body);

Sets the body of the $whatsit to the boxes in @body. The last $box
in @body is assumed to represent the ‘trailer’, that is the result of the
invocation that closed the environment or math. It is stored separately in
the properties under ’trailer’.

$list = $whatsit->getTrailer;

Return the trailer for this $whatsit. See setBody.

70 APPENDIX B. MODULES

LaTeXML::Number

Representation of numbers, dimensions, skips and glue.

Description

This module defines various dimension and number-like data objects

LaTeXML::Number

represents numbers,

LaTeXML::Float

represents floating-point numbers,

LaTeXML::Dimension

represents dimensions,

LaTeXML::MuDimension

represents math dimensions,

LaTeXML::Glue

represents glue (skips),

LaTeXML::MuGlue

represents math glue,

LaTeXML::Pair

represents pairs of numbers

LaTeXML::Pairlist

represents list of pairs.

Common methods

The following methods apply to all objects.

@tokens = $object->unlist;

Return a list of the tokens making up this $object.

$string = $object->toString;

Return a string representing $object.

$string = $object->ptValue;

Return a value representing $object without the measurement unit (pt)
with limited decimal places.

71

Numerics methods

These methods apply to the various numeric objects

$n = $object->valueOf;

Return the value in scaled points (ignoring shrink and stretch, if any).

$n = $object->smaller($other);

Return $object or $other, whichever is smaller

$n = $object->larger($other);

Return $object or $other, whichever is larger

$n = $object->absolute;

Return an object representing the absolute value of the $object.

$n = $object->sign;

Return an integer: -1 for negatives, 0 for 0 and 1 for positives

$n = $object->negate;

Return an object representing the negative of the $object.

$n = $object->add($other);

Return an object representing the sum of $object and $other

$n = $object->subtract($other);

Return an object representing the difference between $object and $other

$n = $object->multiply($n);

Return an object representing the product of $object and $n (a regular
number).

72 APPENDIX B. MODULES

LaTeXML::Font

Representation of fonts, along with the specialization LaTeXML::MathFont.

Description

This module defines Font objects. I’m not completely happy with the arrange-
ment, or maybe just the use of it, so I’m not going to document extensively at
this point.

LaTeXML::Font and LaTeXML::MathFont represent fonts (the latter, fonts
in math-mode, obviously) in LaTeXML.

The attributes are

family : serif, sansserif, typewriter, caligraphic,
fraktur, script

series : medium, bold
shape : upright, italic, slanted, smallcaps
size : tiny, footnote, small, normal, large,

Large, LARGE, huge, Huge
color : any named color, default is black

They are usually merged against the current font, attempting to mimic the,
sometimes counter-intuitive, way that TeX does it, particularly for math

LaTeXML::MathFont

LaTeXML::MathFont supports $font-specialize($string);>for computing a font
reflecting how the specific $string would be printed when $font is active; This
(attempts to) handle the curious ways that lower case greek often doesn’t get a
different font. In particular, it recognizes the following classes of strings: single
latin letter, single uppercase greek character, single lowercase greek character,
digits, and others.

73

LaTeXML::Mouth

Tokenize the input.

Description

A LaTeXML::Mouth (and subclasses) is responsible for tokenizing, ie. converting
plain text and strings into LaTeXML::Tokens according to the current category
codes (catcodes) stored in the LaTeXML::State.

LaTeXML::FileMouth

specializes LaTeXML::Mouth to tokenize from a file.

LaTeXML::StyleMouth

further specializes LaTeXML::FileMouth for processing style files, setting
the catcode for @ and ignoring comments.

LaTeXML::PerlMouth

is not really a Mouth in the above sense, but is used to definitions from
perl modules with exensions .ltxml and .latexml.

Creating Mouths

$mouth = LaTeXML::Mouth->new($string);

Creates a new Mouth reading from $string.

$mouth = LaTeXML::FileMouth->new($pathname);

Creates a new FileMouth to read from the given file.

$mouth = LaTeXML::StyleMouth->new($pathname);

Creates a new StyleMouth to read from the given style file.

Methods

$token = $mouth->readToken;

Returns the next LaTeXML::Token from the source.

$boole = $mouth->hasMoreInput;

Returns whether there is more data to read.

$string = $mouth->getLocator($long);

Return a description of current position in the source, for reporting errors.

$tokens = $mouth->readTokens($until);

Reads tokens until one matches $until (comparing the character, but not
catcode). This is useful for the \verb command.

74 APPENDIX B. MODULES

$lines = $mouth->readRawLines($endline,$exact);

Reads raw (untokenized) lines from $mouth until a line matching $endline
is found. If $exact is true, $endline is matched exactly, with no lead-
ing or trailing data (like in the c<comment>package). Otherwise, the
match is done like with the c<verbatim>environment; any text preceding
$endline is returned as the last line, and any characters after $endline
remains in the mouth to be tokenized.

75

LaTeXML::Gullet

Expands expandable tokens and parses common token sequences.

Description

A LaTeXML::Gullet reads tokens (LaTeXML::Token) from a LaTeXML::Mouth.
It is responsible for expanding macros and expandable control sequences, if
the current definition associated with the token in the LaTeXML::State is
an LaTeXML::Expandable definition. The LaTeXML::Gullet also provides a
variety of methods for reading various types of input such as arguments, optional
arguments, as well as for parsing LaTeXML::Number, LaTeXML::Dimension, etc,
according to TeX’s rules.

Managing Input

$gullet->input($name,$types,%options);

Input the file named $name; Searches for matching files in the current
searchpath with an extension being one of $types (an array of strings).
If the found file has a perl extension (pm, ltxml, or latexml), it will be
executed (loaded). If the found file has a TeX extension (tex, sty, cls) it
will be opened and latexml will prepare to read from it.

$gullet->openMouth($mouth, $noautoclose);

Is this public? Prepares to read tokens from $mouth. If $noautoclose is
true, the Mouth will not be automatically closed when it is exhausted.

$gullet->closeMouth;

Is this public? Finishes reading from the current mouth, and reverts to
the one in effect before the last openMouth.

$gullet->flush;

Is this public? Clears all inputs.

$gullet->getLocator;

Returns a string describing the current location in the input stream.

Low-level methods

$tokens = $gullet->expandTokens($tokens);

Return the LaTeXML::Tokens resulting from expanding all the tokens in
$tokens. This is actually only used in a few circumstances where the
arguments to an expandable need explicit expansion; usually expansion
happens at the right time.

76 APPENDIX B. MODULES

@tokens = $gullet->neutralizeTokens(@tokens);

Another unusual method: Used for things like \edef and token registers,
to inhibit further expansion of control sequences and proper spawning of
register tokens.

$token = $gullet->readToken;

Return the next token from the input source, or undef if there is no more
input.

$token = $gullet->readXToken($toplevel);

Return the next unexpandable token from the input source, or undef if
there is no more input. If the next token is expandable, it is expanded,
and its expansion is reinserted into the input.

$gullet->unread(@tokens);

Push the @tokens back into the input stream to be re-read.

Mid-level methods

$token = $gullet->readNonSpace;

Read and return the next non-space token from the input after discarding
any spaces.

$gullet->skipSpaces;

Skip the next spaces from the input.

$gullet->skip1Space;

Skip the next token from the input if it is a space.

$tokens = $gullet->readBalanced;

Read a sequence of tokens from the input until the balancing ’}’ (assuming
the ’{’ has already been read). Returns a LaTeXML::Tokens.

$boole = $gullet->ifNext($token);

Returns true if the next token in the input matches $token; the possibly
matching token remains in the input.

$tokens = $gullet->readMatch(@choices);

Read and return whichever of @choices (each are LaTeXML::Tokens)
matches the input, or undef if none do.

$keyword = $gullet->readKeyword(@keywords);

Read and return whichever of @keywords (each a string) matches the
input, or undef if none do. This is similar to readMatch, but case and
catcodes are ignored. Also, leading spaces are skipped.

77

$tokens = $gullet->readUntil(@delims);

Read and return a (balanced) sequence of LaTeXML::Tokens until match-
ing one of the tokens in @delims. In a list context, it also returns which
of the delimiters ended the sequence.

High-level methods

$tokens = $gullet->readArg;

Read and return a TeX argument; the next Token or Tokens (if surrounded
by braces).

$tokens = $gullet->readOptional($default);

Read and return a LaTeX optional argument; returns $default if there
is no ’[’, otherwise the contents of the [].

$thing = $gullet->readValue($type);

Reads an argument of a given type: one of ’Number’, ’Dimension’, ’Glue’,
’MuGlue’ or ’any’.

$value = $gullet->readRegisterValue($type);

Read a control sequence token (and possibly it’s arguments) that names a
register, and return the value. Returns undef if the next token isn’t such
a register.

$number = $gullet->readNumber;

Read a LaTeXML::Number according to TeX’s rules of the various things
that can be used as a numerical value.

$dimension = $gullet->readDimension;

Read a LaTeXML::Dimension according to TeX’s rules of the various
things that can be used as a dimension value.

$mudimension = $gullet->readMuDimension;

Read a LaTeXML::MuDimension according to TeX’s rules of the various
things that can be used as a mudimension value.

$glue = $gullet->readGlue;

Read a LaTeXML::Glue according to TeX’s rules of the various things
that can be used as a glue value.

$muglue = $gullet->readMuGlue;

Read a LaTeXML::MuGlue according to TeX’s rules of the various things
that can be used as a muglue value.

78 APPENDIX B. MODULES

LaTeXML::Stomach

Digests tokens into boxes, lists, etc.

Description

LaTeXML::Stomach digests tokens read from a LaTeXML::Gullet (they will
have already been expanded).

There are basically four cases when digesting a LaTeXML::Token:

A plain character

is simply converted to a LaTeXML::Box (or LaTeXML::MathBox in math
mode), recording the current LaTeXML::Font.

A primitive

If a control sequence represents LaTeXML::Primitive, the primitive is
invoked, executing its stored subroutine. This is typically done for side
effect (changing the state in the LaTeXML::State), although they may
also contribute digested material. As with macros, any arguments to the
primitive are read from the LaTeXML::Gullet.

Grouping (or environment bodies)

are collected into a LaTeXML::List.

Constructors

A special class of control sequence, called a LaTeXML::Constructor pro-
duces a LaTeXML::Whatsit which remembers the control sequence and
arguments that created it, and defines its own translation into XML ele-
ments, attributes and data. Arguments to a constructor are read from the
gullet and also digested.

Digestion

$list = $stomach->digestNextBody;

Return the digested LaTeXML::List after reading and digesting a ‘body’
from the its Gullet. The body extends until the current level of boxing or
environment is closed.

$list = $stomach->digest($tokens);

Return the LaTeXML::List resuting from digesting the given tokens. This
is typically used to digest arguments to primitives or constructors.

@boxes = $stomach->invokeToken($token);

Invoke the given (expanded) token. If it corresponds to a Primitive or
Constructor, the definition will be invoked, reading any needed arguments
fromt he current input source. Otherwise, the token will be digested. A
List of Box’s, Lists, Whatsit’s is returned.

79

@boxes = $stomach->regurgitate;

Removes and returns a list of the boxes already digested at the current
level. This peculiar beast is used by things like \choose (which is a Prim-
itive in TeX, but a Constructor in LaTeXML).

Grouping

$stomach->bgroup;

Begin a new level of binding by pushing a new stack frame, and a new
level of boxing the digested output.

$stomach->egroup;

End a level of binding by popping the last stack frame, undoing whatever
bindings appeared there, and also decrementing the level of boxing.

$stomach->begingroup;

Begin a new level of binding by pushing a new stack frame.

$stomach->endgroup;

End a level of binding by popping the last stack frame, undoing whatever
bindings appeared there.

Modes

$stomach->beginMode($mode);

Begin processing in $mode; one of ’text’, ’display-math’ or ’inline-math’.
This also begins a new level of grouping and switches to a font appropriate
for the mode.

$stomach->endMode($mode);

End processing in $mode; an error is signalled if $stomach is not currently
in $mode. This also ends a level of grouping.

80 APPENDIX B. MODULES

LaTeXML::Document

Represents an XML document under construction.

Description

A LaTeXML::Document constructs an XML document by absorbing the digested
LaTeXML::List (from a LaTeXML::Stomach), Generally, the LaTeXML::Boxs
and LaTeXML::Lists create text nodes, whereas the LaTeXML::Whatsits create
XML document fragments, elements and attributes according to the defining
LaTeXML::Constructor.

The LaTeXML::Document maintains a current insertion point for where ma-
terial will be added. The LaTeXML::Model, derived from various declarations
and document type, is consulted to determine whether an insertion is allowed
and when elements may need to be automatically opened or closed in order to
carry out a given insertion. For example, a subsection element will typically
be closed automatically when it is attempted to open a section element.

In the methods described here, the term $qname is used for XML qualified
names. These are tag names with a namespace prefix. The prefix should be one
registered with the current Model, for use within the code. This prefix is not
necessarily the same as the one used in any DTD, but should be mapped to the
a Namespace URI that was registered for the DTD.

The arguments named $node are an XML::LibXML node.

Accessors

$doc = $document->getDocument;

Returns the XML::LibXML::Document currently being constructed.

$node = $document->getNode;

Returns the node at the current insertion point during construction. This
node is considered still to be ‘open’; any insertions will go into it (if pos-
sible). The node will be an XML::LibXML::Element, XML::LibXML::Text
or, initially, XML::LibXML::Document.

$node = $document->getElement;

Returns the closest ancestor to the current insertion point that is an Ele-
ment.

$document->setNode($node);

Sets the current insertion point to be $node. This should be rarely used,
if at all; The construction methods of document generally maintain the
notion of insertion point automatically. This may be useful to allow inser-
tion into a different part of the document, but you probably want to set
the insertion point back to the previous node, afterwards.

81

Construction Methods

$document->absorb($digested);

Absorb the $digested object into the document at the current insertion
point according to its type. Various of the the other methods are invoked
as needed, and document nodes may be automatically opened or closed
according to the document model.

$xmldoc = $document->finalize;

This method finalizes the document by cleaning up various temporary at-
tributes, and returns the XML::LibXML::Document that was constructed.

$document->openText($text,$font);

Open a text node in font $font, performing any required automatic open-
ing and closing of intermedate nodes (including those needed for font
changes) and inserting the string $text into it.

$document->insertMathToken($string,%attributes);

Insert a math token (XMTok) containing the string $string with the
given attributes. Useful attributes would be name, role, font. Returns the
newly inserted node.

$document->openElement($qname,%attributes);

Open an element, named $qname and with the given attributes. This will
be inserted into the current node while performing any required automatic
opening and closing of intermedate nodes. The new element is returned,
and also becomes the current insertion point. An error (fatal if in Strict
mode) is signalled if there is no allowed way to insert such an element into
the current node.

$document->closeElement($qname);

Close the closest open element named $qname including any intermedate
nodes that may be automatically closed. If that is not possible, signal an
error. The closed node’s parent becomes the current node. This method
returns the closed node.

$node = $document->isOpenable($qname);

Check whether it is possible to open a $qname element at the current
insertion point.

$node = $document->isCloseable($qname);

Check whether it is possible to close a $qname element, returning the node
that would be closed if possible, otherwise undef.

$document->maybeCloseElement($qname);

Close a $qname element, if it is possible to do so, returns the closed node
if it was found, else undef.

http://search.cpan.org/search?query=XML::LibXML::Document&mode=module

82 APPENDIX B. MODULES

$document->insertElement($qname,$content,%attributes);

This is a shorthand for creating an element $qname (with given attributes),
absorbing $content from within that new node, and then closing it. The
$content must be digested material, either a single box, or an array of
boxes. This method returns the newly created node, although it will no
longer be the current insertion point.

$document->insertComment($text);

Insert, and return, a comment with the given $text into the current node.

$document->insertPI($op,%attributes);

Insert, and return, a ProcessingInstruction into the current node.

$document->addAttribute($key=>$value);

Add the given attribute to the nearest node that is allowed to have it.

83

LaTeXML::Model

Represents the Document Model

Description

LaTeXML::Model encapsulates information about the document model to be
used in converting a digested document into XML by the LaTeXML::Document.
This information is based on the document schema (eg, DTD, RelaxNG), but
is also modified by package modules; thus the model may not be complete until
digestion is completed.

The kinds of information that is relevant is not only the content model
(what each element can contain contain), but also SGML-like information such
as whether an element can be implicitly opened or closed, if needed to insert a
new element into the document.

Currently, only an approximation to the schema is understood and used. For
example, we only record that certain elements can appear within another; we
don’t preserve any information about required order or number of instances.

Model Creation

$model = LaTeXML::Model->new(%options);

Creates a new model. The only useful option is permissive=>1 which
ignores any DTD and allows the document to be built without following
any particular content model.

Document Type

$model->setDocType($rootname,$publicid,$systemid,%namespaces);

Declares the expected rootelement, the public and system ID’s of the
document type to be used in the final document. The hash %namespaces
specifies the namespace prefixes that are expected to be found in the DTD,
along with the associated namespace URI. These prefixes may be different
from the prefixes used in implementation code (eg. in ltxml files; see
RegisterNamespace). The generated document will use the namespaces
and prefixes defined here.

Namespaces

Note that there are two namespace mappings between namespace URIs and
prefixes that are relevant to LaTeXML. The ‘code’ mapping is the one used
in code implementing packages, and in particular, constructors defined within
those packages. The prefix ltx is used consistently to refer to LaTeXML’s own
namespace (http://dlmf.nist.gov/LaTeXML).

The other mapping, the ‘document’ mapping, is used in the created docu-
ment; this may be different from the ‘code’ mapping in order to accommodate

84 APPENDIX B. MODULES

DTDs, for example, or for use by other applications that expect a rigid names-
pace mapping.

$model->registerNamespace($prefix,$namespace url);

Register $prefix to stand for the namespace $namespace url. This prefix
can then be used to create nodes in constructors and Document methods.
It will also be recognized in XPath expressions.

$model->getNamespacePrefix($namespace);

Return the prefix to use for the given $namespace.

$model->getNamespace($prefix);

Return the namespace url for the given $prefix.

Model queries

$boole = $model->canContain($tag,$childtag);

Returns whether an element with qualified name $tag can contain an ele-
ment with qualified name $childtag. The tag names #PCDATA, #Doc-
ument, #Comment and #ProcessingInstruction are specially recognized.

$auto = $model->canContainIndirect($tag,$childtag);

Checks whether an element with qualified name $tag could contain an ele-
ment with qualified name $childtag, provided an ‘autoOpen’able element
$auto were inserted in $tag.

$boole = $model->canContainSomehow($tag,$childtag);

Returns whether an element with qualified name $tag could contain an
element with qualified name $childtag, either directly or indirectly.

$boole = $model->canAutoClose($tag);

Returns whether an element with qualified name $tag is allowed to be
closed automatically, if needed.

$boole = $model->canHaveAttribute($tag,$attribute);

Returns whether an element with qualified name $tag is allowed to have
an attribute with the given name.

Tag Properties

$value = $model->getTagProperty($tag,$property);

Gets the value of the $property associated with the qualified name $tag
Known properties are:

85

autoOpen : This asserts that the tag is allowed to
be opened automatically if needed to
insert some other element. If not set,
the tag can only be opened explicitly.

autoClose : This asserts that the $tag is allowed to
be closed automatically if needed to
insert some other element. If not set,
the tag can only be closed explicitly.

afterOpen : supplies code to be executed whenever
an element of this type is opened. It
is called with the created node and the
responsible digested object as arguments.

afterClose : supplies code to be executed whenever
an element of this type is closed. It
is called with the created node and the
responsible digested object as arguments.

$model->setTagProperty($tag,$property,$value);

sets the value of the $property associated with the qualified name $tag
to $value.

Rewrite Rules

$model->addRewriteRule($mode,@specs);

Install a new rewrite rule with the given @specs to be used in $mode
(being either math or text). See LaTeXML::Rewrite for a description of
the specifications.

$model->applyRewrites($document,$node,$until rule);

Apply all matching rewrite rules to $node in the given document. If
$until rule is define, apply all those rules that were defined before it,
otherwise, all rules

86 APPENDIX B. MODULES

LaTeXML::Rewrite

Rewrite rules for modifying the XML document.

Description

LaTeXML::Rewrite implements rewrite rules for modifying the XML document.

Methods

$rule->rewrite($document,$node);

87

LaTeXML::MathParser

Parses mathematics content

Description

LaTeXML::MathParser parses the mathematical content of a document. It uses
Parse::RecDescent and a grammar MathGrammar.

Math Representation

Needs description.

Possibile Customizations

Needs description.

Convenience functions

The following functions are exported for convenience in writing the grammar
productions.

$node = New($name,$content,%attributes);

Creates a new XMTok node with given $name (a string or undef), and
$content (a string or undef) (but at least one of name or content should
be provided), and attributes.

$node = Arg($node,$n);

Returns the $n-th argument of an XMApp node; 0 is the operator node.

Annotate($node,%attributes);

Add attributes to $node.

$node = Apply($op,@args);

Create a new XMApp node representing the application of the node $op to
the nodes @args.

$node = ApplyDelimited($op,@stuff);

Create a new XMApp node representing the application of the node $op to
the arguments found in @stuff. @stuff are delimited arguments in the
sense that the leading and trailing nodes should represent open and close
delimiters and the arguments are seperated by punctuation nodes. The
text of these delimiters and punctuation are used to annotate the operator
node with argopen, argclose and separator attributes.

$node = recApply(@ops,$arg);

Given a sequence of operators and an argument, forms the nested appli-
cation op(op(...(arg)))>.

http://search.cpan.org/search?query=Parse::RecDescent&mode=module

88 APPENDIX B. MODULES

$node = InvisibleTimes;

Creates an invisible times operator.

$boole = isMatchingClose($open,$close);

Checks whether $open and $close form a ‘normal’ pair of delimiters, or
if either is ”.”.

$node=>Fence(@stuff);

Given a delimited sequence of nodes, starting and ending with open/close
delimiters, and with intermediate nodes separated by punctuation or such,
attempt to guess what type of thing is represented such as a set, absolute
value, interval, and so on. If nothing specific is recognized, creates the
application of FENCED to the arguments.

This would be a good candidate for customization!

$node = NewFormulae(@stuff);

Given a set of formulas, construct a Formulae application, if there are
more than one, else just return the first.

$node = NewCollection(@stuff);

Given a set of expressions, construct a Collection application, if there
are more than one, else just return the first.

$node = LeftRec($arg1,@more);

Given an expr followed by repeated (op expr), compose the left recursive
tree. For example a + b + c - d would give (- (+ a b c) d)>

Problem($text);

Warn of a potential math parsing problem.

MaybeFunction($token);

Note the possible use of $token as a function, which may cause incorrect
parsing. This is used to generate warning messages.

Appendix C

Utility Module
Documentation

LaTeXML::Util::Pathname

Portable pathname and file-system utilities

Description

This module combines the functionality File::Spec and File::Basename to
give a consistent set of filename utilties for LaTeXML. A pathname is repre-
sented by a simple string.

Pathname Manipulations

$path = pathname make(%peices);

Constructs a pathname from the keywords in pieces dir : directory name
: the filename (possibly with extension) type : the filename extension

($dir,$name,$type) = pathname split($path);

Splits the pathname $path into the components: directory, name and
type.

$path = pathname canonical($path);

Canonicallizes the pathname $path by simplifying repeated slashes, dots
representing the current or parent directory, etc.

$dir = pathname directory($path);

Returns the directory component of the pathname $path.

$name = pathname name($path);

Returns the name component of the pathname $path.

89

http://search.cpan.org/search?query=File::Spec&mode=module
http://search.cpan.org/search?query=File::Basename&mode=module

90 APPENDIX C. UTILITY MODULES

$type = pathname type($path);

Returns the type component of the pathname $path.

$path = pathname concat($dir,$file);

Returns the pathname resulting from concatenating the directory $dir
and filename $file.

$boole = pathname is absolute($path);

Returns whether the pathname $path appears to be an absolute path-
name.

$path = pathname relative($path,$base);

Returns the path to file $path relative to the directory $base.

$path = pathname absolute($path,$base);

Returns the absolute pathname resulting from interpretting $path rela-
tive to the directory $base. If $path is already absolute, it is returned
unchanged.

File System Operations

$modtime = pathname timestamp($path);

Returns the modification time of the file named by $path, or undef if the
file does not exist.

$path = pathname cwd();

Returns the current working directory.

$dir = pathname mkdir($dir);

Creates the directory $dir and all missing ancestors. It returns $dir if
successful, else undef.

$dest = pathname copy($source,$dest);

Copies the file $source to $dest if needed; ie. if $dest is missing or older
than $source. It preserves the timestamp of $source.

$path = pathname find($name,%options);

Finds the first file named $name that exists and that matches the specifi-
cation in the keywords %options. An absolute pathname is returned.

If $name is not already an absolute pathname, then the option paths
determines directories to recursively search. It should be a list of path-
names, any relative paths are interpreted relative to the current directory.
If paths is omitted, then the current directory is searched.

If the option installation subdir is given, it indicates, in addition to
the above, a directory relative to the LaTeXML installation directory to
search. This allows files included with the distribution to be found.

91

The types option specifies a list of filetypes to search for. If not supplied,
then the filename must match exactly.

@paths = pathname findall($name,%options);

This performs the same operation as pathname find, but returns all match-
ing paths that exist.

92 APPENDIX C. UTILITY MODULES

Appendix D

Postprocessing Module
Documentation

LaTeXML::Post

LaTeXML::Post is the driver for various postprocessing operations. It has a
complicated set of options that I’ll document shortly.

93

94 APPENDIX D. POSTPROCESSING MODULES

Appendix E

LATExml Schema

The document type used by LATExml is modular in the sense that it is composed
of several modules that define different sets of elements related to, eg., inline
content, block content, math and high-level document structure. This allows
the possibility of mixing models or extension by predefining certain parameter
entities.

Module LaTeXML

LaTeXML-common included.

LaTeXML-inline included.

LaTeXML-block included.

LaTeXML-para included.

LaTeXML-math included.

LaTeXML-tabular included.

LaTeXML-picture included.

LaTeXML-structure included.

LaTeXML-bib included.

Inline.model Combined model for inline content.

== (#PCDATA | Inline.class | Misc.class | Meta.class)*

Block.model Combined model for physical block-level content.

== (Block.class | Misc.class | Meta.class)*

95

96 APPENDIX E. SCHEMA

Flow.model Combined model for general flow containing both inline and
block level content.

== (#PCDATA | Inline.class | Block.class | Misc.class
| Meta.class)*

Para.model Combined model for logical block-level context.

== (Para.class | Meta.class)*

Start == document

Module LaTeXML-common

Inline.class All strictly inline elements.

==()

Block.class All ‘physical’ block elements. A physical block is typically
displayed as a block, but may not constitute a complete logical unit.

==()

Misc.class Additional miscellaneous elements that can appear in both
inline and block contexts.

==()

Para.class All logical block level elements. A logical block typically
contains one or more physical block elements. For example, a common
situation might be p,equation,p, where the entire sequence comprises a
single sentence.

==()

Meta.class All metadata elements, typically representing hidden data.

==()

Length.type The type for attributes specifying a length. Should be a
number followed by a length, typically px. NOTE: To be narrowed later.

==()

Color.type The type for attributes specifying a color. NOTE: To be
narrowed later.

==()

Common.attributes Attributes shared by ALL elements.

== Attributes:

97

class a space separated list of tokens, as in CSS. The class can be
used to add differentiate different instances of elements without
introducing new element declarations. However, this generally
shouldn’t be used for deep semantic distinctions. This attribute is
carried over to HTML and can be used for CSS selection. [Note
that the default XSLT stylesheets for html and xhtml add the
latexml element names to the class of html elements for more
convenience in using CSS.]

= NMTOKENS

ID.attributes Attributes for elements that can be cross-referenced from
inside or outside the document.

== Attributes:

xml:id the unique identifier of the element, usually generated
automatically by the latexml.

= ID

IDREF.attributes Attributes for elements that can cross-reference other
elements.

== Attributes:

idref the identifier of the referred-to element.
= IDREF

Labelled.attributes Attributes for elements that can be labelled from
within LaTeX.

== Attributes:

ID.attributes included

labels Records the various labels that LaTeX uses for
crossreferencing. (note that \label can associate more than one
label with an object!) It consists of space separated labels for the
element. The \label macro provides the label prefixed by LABEL:;
Spaces in a label are replaced by underscore. Other mechanisms
(like acro?) might use other prefixes (but ID: is reserved!)

= text

refnum the reference number (ie. section number, equation number,
etc) of the object.

= text

Positionable.attributes Attributes shared by low-level, generic inline
and block elements that can be sized or shifted.

== Attributes:

98 APPENDIX E. SCHEMA

width the desired width of the box
= Length.type

height the desired height of the box
= Length.type

depth the desired depth of the box
= Length.type

pad-width extra width beyond the boxes natural size.
= Length.type

pad-height extra height beyond the boxes natural size.
= Length.type

xoffset horizontal shift the position of the box.
= Length.type

yoffset vertical shift the position of the box.
= Length.type

align alignment of material within the box.
= (‘left’ | ‘center’ | ‘right’ | ‘justified’)

vattach specifies which line of the box is aligned to the baseline of
the containing object.

= (‘top’ | ‘middle’ | ‘bottom’)

Imageable.attributes Attributes for elements that may be converted to
image form during postprocessing, such as math, graphics, pictures, etc.

== Attributes:

imagesrc the file, possibly generated from other data.
= anyURI

imagewidth the width in pixels of imagesrc.
= nonNegativeInteger

imageheight the height in pixels of imagesrc.
= nonNegativeInteger

description a description of the image
= text

Module LaTeXML-inline

Inline.class The inline module defines basic inline elements used
throughout

|= (text | emph | acronym | rule | anchor | ref | cite
| bibref)

99

Meta.class Additionally, it defines these meta elements. These are
generally hidden, and can appear in inline and block contexts.

|= (note | indexmark | ERROR)

text General container for styled text. Attributes cover a variety of styling
and position shifting properties.

attributes:

Common.attributes, Positionable.attributes included

font the font to use (describe!)
= text

size the text size to use (describe!)
= text

color the color to use; any CSS compatible color specification.
= text

framed the kind of frame or outline for the text.
= (‘rectangle’ | ‘underline’)

content: Inline.model

emph Emphasized text.

attributes: Common.attributes

content: Inline.model

acronym Represents an acronym.

attributes:

Common.attributes included

name should be used to indicate the expansion of the acronym.
= text

content: Inline.model

rule A Rule.

attributes: Common.attributes, Positionable.attributes

content: empty

ref A hyperlink reference to some other object. When converted to
HTML, the content would be the content of the anchor. The destination
can be specified by one of the attributes labelref, idref or href;
Missing fields will usually be filled in during postprocessing, based on
data extracted from the document(s).

attributes:

100 APPENDIX E. SCHEMA

Common.attributes, IDREF.attributes included

labelref reference to a LaTeX labelled object.
= text

href reference to an arbitrary url.
= text

show a pattern encoding how the text content should be filled in
during postprocessing, if it is empty. It consists of the words type
(standing for the object type, eg. Ch.), refnum and title mixed
with arbitrary characters. The It can also be fulltitle, which
indicates the title with prefix and type if section numbering is
enabled.

= text

title gives a longer form description of the target, this would
typically appear as a tooltip in HTML. Typically filled in by
postprocessor.

= text

content: Inline.model

anchor Inline anchor.

attributes: Common.attributes, ID.attributes

content: Inline.model

cite A container for a bibliographic citation. The model is inline to allow
arbitrary comments before and after the expected bibref(s) which are
the specific citation.

attributes: Common.attributes

content: Inline.model

bibref A bibliographic citation refering to a specific bibliographic item.

attributes:

Common.attributes, IDREF.attributes included

bibrefs a comma separated list of bibliographic keys.
= text

show a pattern encoding how the text content (of an empty bibref)
will be filled in. Consists of strings author, year and title (to be
replaced by data from the bibliographic item) mixed with arbitrary
characters.

= text

content: Inline.model

101

note Metadata that covers several ‘out of band’ annotations. It’s content
allows both inline and block-level content.

attributes:

Common.attributes included

mark indicates the desired visible marker to be linked to the note.
= text

content: Flow.model

ERROR error object for undefined control sequences, or whatever

attributes: Common.attributes

content: #PCDATA*

indexmark Metadata to record an indexing position. The content is a
sequence of indexphrase, each representing a level in a multilevel
indexing entry.

attributes:

Common.attributes included

see also a flattened form (like key) of another indexmark, used to
crossreference.

= text

style NOTE: describe this.
= text

content: indexphrase*

indexphrase A phrase within an indexmark

attributes:

Common.attributes included

key a flattened form of the phrase for generating an ID.
= text

content: Inline.model

Module LaTeXML-block

Block.class The block module defines the following ‘physical’ block
elements.

|= (p | equation | equationgroup | quote | centering | block
| itemize | enumerate | description)

102 APPENDIX E. SCHEMA

Misc.class Additionally, it defines these miscellaneous elements that can
appear in both inline and block contexts.

|= (inline-block | verbatim | break | graphics)

EquationMeta.class Additional Metadata that can be present in
equations.

== constraint

p A physical paragraph.

attributes: Common.attributes

content: Inline.model

centering A physical block that centers its content. NOTE: Reconsider
this; perhaps should be a property on other blocks?

attributes: Common.attributes

content: (caption | toccaption | Block.model)*

constraint A constraint upon an equation.

attributes:

hidden

= boolean

content: Inline.model

equation An Equation. The model is just Inline which includes Math, the
main expected ingredient. However, other things can end up in display
math, too, so we use Inline. Note that tabular is here only because it’s a
common, if misguided, idiom; the processor will lift such elements out of
math, when possible

attributes: Common.attributes, Labelled.attributes

content: (Math | MathFork | text | tabular | Meta.class
| EquationMeta.class)*

equationgroup A group of equations, perhaps aligned (Though this is
nowhere recorded).

attributes: Common.attributes, Labelled.attributes

content: (equationgroup | equation | block | Meta.class
| EquationMeta.class)*

MathFork A wrapper for Math that provides alternative, but typically less
semantically meaningful, formatted representations. The first child is the
meaningful form, the extra children provide formatted forms, for
example being table rows or cells arising from an eqnarray.

attributes: Common.attributes

content: Math MathBranch*

103

MathBranch A container for an alternatively formatted math
representation.

attributes:

Common.attributes included

format

= text

content: (Math | tr | td)*

quote A quotation.

attributes: Common.attributes

content: Inline.model

block A generic block (fallback).

attributes: Common.attributes, Positionable.attributes

content: Inline.model

break A forced line break.

attributes: Common.attributes

content: empty

inline-block An inline block. Actually, can appear in inline or block
mode, but typesets its contents as a block.

attributes: Common.attributes, Positionable.attributes

content: Inline.model

verbatim Verbatim content

attributes:

Common.attributes included

font the font to use; generally typewriter.
= text

content: Inline.model

itemize An itemized list.

attributes: Common.attributes, ID.attributes

content: item*

enumerate An enumerated list.

attributes: Common.attributes, ID.attributes

content: item*

104 APPENDIX E. SCHEMA

description A description list. The items within are expected to have a
tag which represents the term being described in each item.

attributes: Common.attributes, ID.attributes

content: item*

item An item within a list.

attributes: Common.attributes, Labelled.attributes

content: tag? Block.model

tag A tag within an item indicating the term or bullet for a given item.

attributes:

Common.attributes included

open specifies an open delimiters used to display the tag.
= text

close specifies an close delimiters used to display the tag.
= text

content: Inline.model

graphics A graphical insertion of an external file.

attributes:

Common.attributes, Imageable.attributes included

graphic the path to the graphics file
= text

options an encoding of the scaling and positioning options to be
used in processing the graphic.

= text

content: empty

Module LaTeXML-para

Para.class This module ‘logical’ block elements.

|= (para | theorem | proof | figure | table)

para A Logical paragraph. It has an id, but not a label.

attributes: Common.attributes, ID.attributes

content: Block.model

105

theorem A theorem or similar object. The class attribute can be used to
distinguish different kinds of theorem.

attributes: Common.attributes, Labelled.attributes

content: title? Block.model

proof A proof or similar object. The class attribute can be used to
distinguish different kinds of proof.

attributes: Common.attributes, Labelled.attributes

content: title? Block.model

Caption.class These are the additional elements representing figure and
table captions. NOTE: Could title sensibly be reused here, instead? Or,
should caption be used for theorem and proof?

== (caption | toccaption)

figure A figure, possibly captioned.

attributes:

Common.attributes, Labelled.attributes included

placement the floating placement parameter that determines where
the object is displayed.

= text

content: (Block.model | Caption.class)*

table A Table, possibly captioned. This is not necessarily a tabular.

attributes:

Common.attributes, Labelled.attributes included

placement the floating placement parameter that determines where
the object is displayed.

= text

content: (Block.model | Caption.class)*

caption A caption for a table or figure.

attributes: Common.attributes

content: Inline.model

toccaption A short form of table or figure caption, used for lists of
figures or similar.

attributes: Common.attributes

content: Inline.model

106 APPENDIX E. SCHEMA

Module LaTeXML-math

Inline.class The math module defines LaTeXML’s internal
representation of mathematical content, including the basic math
container Math. This element is considered inline, as it will be contained
within some other block-level element, eg. equation for display-math.

|= Math

Math.class This class defines the content of the Math element.
Additionally, it could contain MathML or OpenMath, after
postprocessing.

== XMath

XMath.class These elements comprise the internal math representation,
being the content of the XMath element.

== (XMApp | XMTok | XMRef | XMHint | XMArg | XMWrap | XMDual
| XMText | XMArray)

Math Outer container for all math. This holds the internal XMath
representation, as well as image data and other representations.

attributes:

Common.attributes, Imageable.attributes included

mode display or inline mode.
= (‘display’ | ‘inline’)

tex reconstruction of the TEX that generated the math.
= text

content-tex more semantic version of tex.
= text

text a textified representation of the math.
= text

content: Math.class*

XMath.attributes

== Attributes:

role The role that this item plays in the Grammar.
= text

open an open delimiter to enclose the object;
= text

close an close delimiter to enclose the object;
= text

107

argopen an open delimiter to enclose the argument list, when this
token is applied to arguments with XMApp.

= text

argclose a close delimiter to enclose the argument list, when this
token is applied to arguments with XMApp.

= text

separators characters to separate arguments, when this token is
applied to arguments with XMApp. Can be multiple characters for
different argument positions; the last character is repeated if there
aren’t enough.

= text

punctuation trailing (presumably non-semantic) punctuation.
= text

possibleFunction an annotation placed by the parser when it
suspects this token may be used as a function.

= text

XMath Internal representation of mathematics.

attributes: Common.attributes

content: XMath.class*

XMTok General mathematical token.

attributes:

Common.attributes, XMath.attributes, ID.attributes included

name The name of the token, typically the control sequence that
created it.

= text

meaning A more semantic name corresponding to the intended
meaning, such as the OpenMath name.

= text

omcd The OpenMath CD for which meaning is a symbol.
= text

style Various random styling information. NOTE This needs to be
made consistent.

= text

font The font, size a used for the symbol.
= text

size The size for the symbol, not presumed to be meaningful(?)
= text

108 APPENDIX E. SCHEMA

color The color (CSS format) for the symbol, not presumed to be
meaningful(?)

= text

scriptpos An encoding of the position of this token as a
sub/superscript, used to handle aligned and nested scripts, both pre
and post. It is a concatenation of (pre—mid—post), which
indicates the horizontal positioning of the script with relation to it’s
base, and a counter indicating the level. These are used to position
the scripts, and to pair up aligned sub- and superscripts. NOTE:
Clarify where this appears: token, base, script operator, apply?

= text

thickness NOTE: How is this used?
= text

content: #PCDATA*

XMApp Generalized application of a function, operator, whatever (the first
child) to arguments (the remaining children). The attributes are a subset
of those for XMTok.

attributes:

Common.attributes, XMath.attributes, ID.attributes included

name The name of the token, typically the control sequence that
created it.

= text

meaning A more semantic name corresponding to the intended
meaning, such as the OpenMath name.

= text

scriptpos An encoding of the position of this token as a
sub/superscript, used to handle aligned and nested scripts, both pre
and post.

= text

content: XMath.class*

XMDual Parallel markup of content (first child) and presentation (second
child) of a mathematical object. Typically, the arguments are shared
between the two branches: they appear in the content branch, with id’s,
and XMRef is used in the presentation branch

attributes: Common.attributes, XMath.attributes, ID.attributes

content: XMath.class XMath.class

XMHint Various spacing items, generally ignored in parsing. The attributes
are a subset of those for XMTok.

attributes:

109

Common.attributes, XMath.attributes, ID.attributes included
name

= text
meaning

= text
style

= text

content: empty

XMText Text appearing within math.

attributes: Common.attributes, XMath.attributes, ID.attributes

content: (#PCDATA | Inline.class | Misc.class)*

XMWrap Wrapper for a sequence of tokens used to assert the role of the
contents in its parent. This element generally disappears after parsing.
The attributes are a subset of those for XMTok.

attributes:

Common.attributes, XMath.attributes, ID.attributes included
name

= text
meaning A more semantic name corresponding to the intended

meaning, such as the OpenMath name.
= text

style

= text

content: XMath.class*

XMArg Wrapper for an argument to a structured macro. It implies that its
content can be parsed independently of its parent, and thus generally
disappears after parsing.

attributes:

Common.attributes, XMath.attributes, ID.attributes included
rule

= text

content: XMath.class*

XMRef Structure sharing element typically used in the presentation branch
of an XMDual to refer to the arguments present in the content branch.

attributes: Common.attributes, XMath.attributes, ID.attributes,
IDREF.attributes

content: empty

110 APPENDIX E. SCHEMA

XMArray Math Array/Alignment structure.

attributes:

Common.attributes, XMath.attributes, ID.attributes included

name

= text

meaning

= text

style

= text

vattach

= (‘top’ | ‘bottom’)

width

= text

content: XMRow*

XMRow A row in a math alignment.

attributes: Common.attributes

content: XMCell*

XMCell A cell in a row of a math alignment.

attributes:

Common.attributes included

colspan indicates how many columns this cell spans or covers.
= nonNegativeInteger

rowpan indicates how many rows this cell spans or covers.
= nonNegativeInteger

align specifies the alignment of the content.
= text

width specifies the desired width for the column.
= text

border records a sequence of t or tt, r or rr, b or bb and l or ll for
borders or doubled borders on any side of the cell.

= text

thead whether this cell corresponds to a table head or foot.
= boolean

content: XMath.class*

111

Module LaTeXML-tabular

Misc.class This module defines the basic tabular, or alignment, structure.
It is roughly parallel to the HTML model.

|= tabular

tabular An alignment structure corresponding to tabular or various
similar forms. The model is basically a copy of HTML4’s table.

attributes:

Common.attributes included

vattach which row’s baseline aligns with the container’s baseline.
= (‘top’ | ‘middle’ | ‘bottom’)

width the desired width of the tabular.
= Length.type

content: (thead | tfoot | tbody | tr)*

thead A container for a set of rows that correspond to the header of the
tabular.

attributes: Common.attributes

content: tr*

tfoot A container for a set of rows that correspond to the footer of the
tabular.

attributes: Common.attributes

content: tr*

tbody A container for a set of rows corresponding to the body of the
tabular.

attributes: Common.attributes

content: tr*

tr A row of a tabular.

attributes: Common.attributes

content: td*

td A cell in a row of a tabular.

attributes:

Common.attributes included

colspan indicates how many columns this cell spans or covers.
= nonNegativeInteger

112 APPENDIX E. SCHEMA

rowspan indicates how many rows this cell spans or covers.
= nonNegativeInteger

align specifies the alignment of the content.
= text

width specifies the desired width for the column.
= Length.type

border records a sequence of t or tt, r or rr, b or bb and l or ll for
borders or doubled borders on any side of the cell.

= text

thead whether this cell corresponds to a table head or foot.
= boolean

content: Flow.model

Module LaTeXML-picture

Misc.class This module defines a picture environment, roughly a subset
of SVG. NOTE: Consider whether it is sensible to drop this and
incorporate SVG itself.

|= picture

Picture.class

== (g | rect | line | circle | path | arc | wedge | ellipse
| polygon | bezier)

Picture.attributes These attributes correspond roughly to SVG, but
need documentation.

== Attributes:

x

= text

y

= text

r

= text

rx

= text

ry

= text

width

= text

113

height

= text

fill

= text

stroke

= text

stroke-width

= text

stroke-dasharray

= text

transform

= text

terminators

= text

arrowlength

= text

points

= text

showpoints

= text

displayedpoints

= text

arc

= text

angle1

= text

angle2

= text

arcsepA

= text

arcsepB

= text

curvature

= text

PictureGroup.attributes These attributes correspond roughly to SVG,
but need documentation.

== Attributes:

114 APPENDIX E. SCHEMA

pos

= text

framed

= boolean

frametype

= (‘rect’ | ‘circle’ | ‘oval’)

fillframe

= boolean

boxsep

= text

shadowbox

= boolean

doubleline

= boolean

picture A picture environment.

attributes:

Common.attributes, Picture.attributes, Imageable.attributes
included

clip

= boolean

baseline

= text

unitlength

= text

xunitlength

= text

yunitlength

= text

tex

= text

content-tex

= text

content: (Picture.class | Inline.class | Misc.class
| Meta.class)*

115

g A graphical grouping; the content is inherits by the transformations,
positioning and other properties.

attributes: Common.attributes, Picture.attributes,
PictureGroup.attributes

content: (Picture.class | Inline.class | Misc.class
| Meta.class)*

rect A rectangle within a picture.

attributes: Common.attributes, Picture.attributes

content: empty

line A line within a picture.

attributes: Common.attributes, Picture.attributes

content: empty

polygon A polygon within a picture.

attributes: Common.attributes, Picture.attributes

content: empty

wedge A wedge within a picture.

attributes: Common.attributes, Picture.attributes

content: empty

arc An arc within a picture.

attributes: Common.attributes, Picture.attributes

content: empty

circle A circle within a picture.

attributes: Common.attributes, Picture.attributes

content: empty

ellipse An ellipse within a picture.

attributes: Common.attributes, Picture.attributes

content: empty

path A path within a picture.

attributes: Common.attributes, Picture.attributes

content: empty

bezier A bezier curve within a picture.

attributes: Common.attributes, Picture.attributes

content: empty

116 APPENDIX E. SCHEMA

Module LaTeXML-structure

document The document root.

attributes: Common.attributes, Labelled.attributes

content: (FrontMatter.class | SectionalFrontMatter.class)*
Para.model paragraph* section* chapter* part* BackMatter.class*

part A part within a document.

attributes: Common.attributes, Labelled.attributes

content: SectionalFrontMatter.class* Para.model chapter*

chapter A Chapter within a document.

attributes: Common.attributes, Labelled.attributes

content: SectionalFrontMatter.class* Para.model subparagraph*
paragraph* subsection* section*

section A Section within a document.

attributes: Common.attributes, Labelled.attributes

content: SectionalFrontMatter.class* Para.model subparagraph*
paragraph* subsection*

appendix An Appendix within a document.

attributes: Common.attributes, Labelled.attributes

content: SectionalFrontMatter.class* Para.model subparagraph*
paragraph* subsection* section*

subsection A Subsection within a document.

attributes: Common.attributes, Labelled.attributes

content: SectionalFrontMatter.class* Para.model subparagraph*
paragraph* subsubsection*

subsubsection A Subsubsection within a document.

attributes: Common.attributes, Labelled.attributes

content: SectionalFrontMatter.class* Para.model subparagraph*
paragraph*

paragraph A Paragraph within a document. This corresponds to a ‘formal’
marked, possibly labelled LaTeX Paragraph, in distinction from an
unlabelled logical paragraph.

attributes: Common.attributes, Labelled.attributes

content: SectionalFrontMatter.class* Para.model subparagraph*

117

subparagraph A Subparagraph within a document.

attributes: Common.attributes, Labelled.attributes

content: SectionalFrontMatter.class* Para.model

bibliography A Bibliography within a document.

attributes:

Common.attributes, Labelled.attributes included

files the list of bib files used to create the bibliograph.
= text

content: FrontMatter.class* SectionalFrontMatter.class*
biblist*

index An Index within a document.

attributes: Common.attributes, Labelled.attributes

content: SectionalFrontMatter.class* indexlist*

indexlist An index generated from the collection of indexmark in a
document (or document collection).

attributes: Common.attributes, ID.attributes

content: indexentry*

indexentry An entry in an indexlist consisting of a phrase, references to
points in the document where the phrase was found, and possibly a
nested indexlist represented index levels below this one.

attributes: Common.attributes, ID.attributes

content: indexphrase indexrefs? indexlist?

indexrefs A container for the references (ref) to where an indexphrase
was encountered in the document. The model is Inline to allow arbitrary
text, in addition to the expected ref’s.

attributes: Common.attributes

content: Inline.model

title The title of a document, section or similar document structure
container.

attributes: Common.attributes

content: Inline.model

toctitle The short form of a title, for use in tables of contents or similar.

attributes: Common.attributes

content: Inline.model

118 APPENDIX E. SCHEMA

subtitle A subtitle, or secondary title.

attributes: Common.attributes

content: Inline.model

personname A person’s name.

attributes: Common.attributes

content: Inline.model

creator Generalized document creator.

attributes:

Common.attributes included

role indicates the role of the person in creating the docment. Values
include author, editor and translator, but is open-ended to support
extension.

= text

content: (Person.class | Misc.class)*

contact Generalized contact information for a document creator.

attributes:

Common.attributes included

role indicates the type of contact information contained. Values
include address, current address, affiliation, thanks, email, url,
dedicatory to cover various common constructs, but is open-ended
to support extension.

= text

content: Inline.model

date Generalized document date.

attributes:

Common.attributes included

role indicates the relevance of the date to the document. Values
include creation, but is open-ended to support extension.

= text

content: Inline.model

abstract A document abstract.

attributes: Common.attributes

content: Block.model

119

acknowledgements Acknowledgements for the document.

attributes: Common.attributes

content: Inline.model

keywords Keywords for the document. The content is freeform.

attributes: Common.attributes

content: Inline.model

classification A classification of the document.

attributes:

Common.attributes included

scheme indicates what classification scheme was used.
= text

content: Inline.model

Person.class

== (personname | contact)

SectionalFrontMatter.class

== (title | toctitle | creator)

FrontMatter.class

== (subtitle | date | abstract | acknowledgements | keywords
| classification)

BackMatter.class

== (bibliography | appendix | index)

Module LaTeXML-bib

biblist A list of bibliographic bibentry or bibitem.

attributes: Common.attributes

content: (bibentry | bibitem)*

bibentry Semantic representation of a bibliography entry, typically
resulting from parsing BibTeX

attributes:

Common.attributes, ID.attributes included

key

= text

120 APPENDIX E. SCHEMA

type

= text

content: Bibentry.class*

bib-author Author of a bibliographic entry.

attributes: Common.attributes

content: Bibname.model

bib-editor Editor of a bibliographic entry.

attributes: Common.attributes

content: Bibname.model

bib-translator Translator of a bibliographic entry.

attributes: Common.attributes

content: Bibname.model

surname Surname of an author, editor or translator.

content: Inline.model

givenname Given name of an author, editor or translator.

content: Inline.model

initials Initials of an author, editor or translator.

content: Inline.model

lineage Lineage of an author, editor or translator. (eg. von)

content: Inline.model

bib-title Title of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-subtitle Subtitle of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-booktitle Title of the book containing a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-key Unique key of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

121

bib-journal Journal of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-series Series of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-conference Conference of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-publisher Publisher of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-organization Organization responsible for a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-institution Institution responsible for a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-address Address of party responsible for a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-volume Volume of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-number Number of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-pages Pages of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-part Part of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

122 APPENDIX E. SCHEMA

bib-date Date of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-edition Edition of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-status Status of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-type Type of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-identifier Some form of document identfier. The content is
descriptive.

attributes:

Common.attributes included

scheme indicates what sort of identifier it is: such as doi, issn, isbn,
mr, or others.

= text

id the identifier.
= text

href a url to the document, if available
= text

content: Inline.model

bib-review Review of a bibliographic entry. The content is descriptive.

attributes:

Common.attributes included

scheme indicates what sort of identifier it is: such as doi, issn, isbn,
mr, or others.

= text

id the identifier.
= text

href a url to the review, if available
= text

123

content: Inline.model

bib-links Links to other things like preprints, source code, etc.

attributes: Common.attributes

content: Inline.model

bib-language Language of a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bib-url A URL for a bibliographic entry. The content is descriptive

attributes:

Common.attributes included

href

= text

content: Inline.model

bib-note Notes about a bibliographic entry.

attributes: Common.attributes

content: Inline.model

bibitem A formatted bibliographic item, typically as written explicit in a
LaTeX article. This has generally lost most of the semantics present in
the BibTeX data.

attributes:

Common.attributes, ID.attributes included

key

= text

content: tag? bibblock*

bibblock A block of data appearing within a bibitem.

content: Inline.model

Bibentry.class

== (bib-author | bib-editor | bib-translator | bib-title
| bib-subtitle | bib-booktitle | bib-key | bib-journal
| bib-series | bib-conference | bib-publisher
| bib-organization | bib-institution | bib-address
| bib-volume | bib-number | bib-pages | bib-part | bib-date
| bib-edition | bib-status | bib-type | bib-language | bib-url
| bib-note | bib-identifier | bib-review | bib-links)

124 APPENDIX E. SCHEMA

Bibname.model The content model of the bibliographic name fields
(bib-author, bib-editor, bib-translator)

== surname givenname? initials? lineage?

Index

LaTeXML, 33
Customization, 34
Description, 33
Methods, 33
See also, 35
Synopsis, 33

latexml, 23
Options & Arguments, 24
See also, 25
Synopsis, 23
usage, 4

LaTeXML::Box, 67
Box Methods, 68
Common Methods, 67
Description, 67
Whatsit Methods, 68

LaTeXML::Definition, 37
Description, 37
Methods in general, 37
More about Constructors, 39
More about Primitives, 38
More about Registers, 38

LaTeXML::Document, 80
Accessors, 80
Construction Methods, 81
Description, 80

LaTeXML::Error, 43
Description, 43
Functions, 43

LaTeXML::Font, 72
Description, 72
LaTeXML::MathFont, 72

LaTeXML::Global, 40
Description, 40
Error Reporting, 42
Generic functions, 42
Global state, 40

Numbers, etc., 41
Synopsis, 40
Tokens, 40

LaTeXML::Gullet, 75
Description, 75
High-level methods, 77
Low-level methods, 75
Managing Input, 75
Mid-level methods, 76

LaTeXML::MathParser, 87
Convenience functions, 87
Description, 87
Math Representation, 87
Possibile Customizations, 87

LaTeXML::Model, 83
Description, 83
Document Type, 83
Model Creation, 83
Model queries, 84
Namespaces, 83
Rewrite Rules, 85
Tag Properties, 84

LaTeXML::Mouth, 73
Creating Mouths, 73
Description, 73
Methods, 73

LaTeXML::Number, 70
Common methods, 70
Description, 70
Numerics methods, 71

LaTeXML::Object, 36
Description, 36
Methods, 36

LaTeXML::Package, 44
Access to State, 58
Argument Readers, 57
Class and Packages, 52

125

126 INDEX

Constructors, 48
Control of Scoping, 47
Control Sequence Parameters, 45
Control Sequences, 45
Counters and IDs, 53
Description, 45
Document Model, 54
Document Rewriting, 55
Low-level Functions, 59
Macros, 47
Mid-Level support, 56
Primitives, 47
Synopsis, 44

LaTeXML::Parameters, 60
Description, 60
Parameters Methods, 60

LaTeXML::Post, 93
LaTeXML::Rewrite, 86

Description, 86
Methods, 86

LaTeXML::State, 62
Access to State and Processing, 62
Category Codes, 63
Definitions, 64
Description, 62
Named Scopes, 64
Scoping, 62
Values, 63

LaTeXML::Stomach, 78
Description, 78
Digestion, 78
Grouping, 79
Modes, 79

LaTeXML::Token, 65
Common methods, 65
Description, 65
Token methods, 65
Tokens methods, 66

LaTeXML::Util::Pathname, 89
Description, 89
File System Operations, 90
Pathname Manipulations, 89

latexmlpost, 26
Format Options, 28
General Options, 28
Graphics Options, 32

Math Options, 31
Options & Arguments, 28
See also, 32
Site & Crossreferencing Options,

29
Source Options, 28
Synopsis, 26
usage, 5

site, 8
split pages, 8

	Introduction
	Using LaTeXML
	Conversion
	Postprocessing
	Splitting
	Sites

	Architecture
	Digestion
	Construction
	Rewriting

	Customization
	Mathematics
	Math Details
	Internal Math Representation
	Grammatical Roles

	ToDo
	Commands
	Modules
	Utility Modules
	Postprocessing Modules
	Schema

