What's New
About the Project
NIST
29 Lamé FunctionsLamé Polynomials

§29.13 Graphics

Contents

§29.13(i) Eigenvalues for Lamé Polynomials

See accompanying text
Figure 29.13.1: a2m(k2), b2m(k2) as functions of k2 for m=0,1,2 (a’s), m=1,2 (b’s). Magnify
See accompanying text
Figure 29.13.2: a1m(k2), b1m(k2) as functions of k2 for m=0,1 (a’s), m=1 (b’s). Magnify
See accompanying text
Figure 29.13.3: a3m(k2), b3m(k2) as functions of k2 for m=0,1,2,3 (a’s), m=1,2,3 (b’s). Magnify
See accompanying text
Figure 29.13.4: a4m(k2), b4m(k2) as functions of k2 for m=0,1,2,3,4 (a’s), m=1,2,3,4 (b’s). Magnify

§29.13(ii) Lamé Polynomials: Real Variable

See accompanying text
Figure 29.13.5: uE4m(x,0.1) for -2Kx2K, m=0,1,2. K=1.61244. Magnify
See accompanying text
Figure 29.13.6: uE4m(x,0.9) for -2Kx2K, m=0,1,2. K=2.57809. Magnify
See accompanying text
Figure 29.13.7: sE5m(x,0.1) for -2Kx2K, m=0,1,2. K=1.61244. Magnify
See accompanying text
Figure 29.13.8: sE5m(x,0.9) for -2Kx2K, m=0,1,2. K=2.57809. Magnify
See accompanying text
Figure 29.13.9: cE5m(x,0.1) for -2Kx2K, m=0,1,2. K=1.61244. Magnify
See accompanying text
Figure 29.13.10: cE5m(x,0.9) for -2Kx2K, m=0,1,2. K=2.57809. Magnify
See accompanying text
Figure 29.13.11: dE5m(x,0.1) for -2Kx2K, m=0,1,2. K=1.61244. Magnify
See accompanying text
Figure 29.13.12: dE5m(x,0.9) for -2Kx2K, m=0,1,2. K=2.57809. Magnify
See accompanying text
Figure 29.13.13: scE4m(x,0.1) for -2Kx2K, m=0,1. K=1.61244. Magnify
See accompanying text
Figure 29.13.14: scE4m(x,0.9) for -2Kx2K, m=0,1. K=2.57809. Magnify
See accompanying text
Figure 29.13.15: sdE4m(x,0.1) for -2Kx2K, m=0,1. K=1.61244. Magnify
See accompanying text
Figure 29.13.16: sdE4m(x,0.9) for -2Kx2K, m=0,1. K=2.57809. Magnify
See accompanying text
Figure 29.13.17: cdE4m(x,0.1) for -2Kx2K, m=0,1. K=1.61244. Magnify
See accompanying text
Figure 29.13.18: cdE4m(x,0.9) for -2Kx2K, m=0,1. K=2.57809. Magnify
See accompanying text
Figure 29.13.19: scdE5m(x,0.1) for -2Kx2K, m=0,1. K=1.61244. Magnify
See accompanying text
Figure 29.13.20: scdE5m(x,0.9) for -2Kx2K, m=0,1. K=2.57809. Magnify

§29.13(iii) Lamé Polynomials: Complex Variable

Figure 29.13.21: |uE41(x+iy,0.1)| for -3Kx3K, 0y2K. K=1.61244, K=2.57809. Magnify
Figure 29.13.22: |uE41(x+iy,0.5)| for -3Kx3K, 0y2K. K=K=1.85407. Magnify
Figure 29.13.23: |uE41(x+iy,0.9)| for -3Kx3K, 0y2K. K=2.57809, K=1.61244. Magnify