11.2 Definitions11.4 Basic Properties

§11.3 Graphics

Contents

§11.3(i) Struve Functions

See accompanying text
Figure 11.3.4: \mathop{\mathbf{K}_{{\nu}}\/}\nolimits\!\left(x\right) for 0<x\leq 16 and \nu=-4,-3,-2,-1,0. If \nu=-\frac{1}{2},-\frac{3}{2}, …, then \mathop{\mathbf{K}_{{\nu}}\/}\nolimits\!\left(x\right) is identically zero. Magnify
Figure 11.3.8: \left|\mathop{\mathbf{K}_{{0}}\/}\nolimits\!\left(x+iy\right)\right| (principal value) for -8\leq x\leq 8 and -3\leq y\leq 3. There is a cut along the negative real axis. Magnify
Figure 11.3.9: |\mathop{\mathbf{H}_{{\frac{1}{2}}}\/}\nolimits\!\left(x+iy\right)| (principal value) for -8\leq x\leq 8 and -3\leq y\leq 3. There is a cut along the negative real axis. Magnify
Figure 11.3.10: |\mathop{\mathbf{K}_{{\frac{1}{2}}}\/}\nolimits\!\left(x+iy\right)| (principal value) for -8\leq x\leq 8 and -3\leq y\leq 3. There is a cut along the negative real axis. Magnify
Figure 11.3.12: \left|\mathop{\mathbf{K}_{{1}}\/}\nolimits\!\left(x+iy\right)\right| (principal value) for -8\leq x\leq 8 and -3\leq y\leq 3. There is a cut along the negative real axis. Magnify

§11.3(ii) Modified Struve Functions

Figure 11.3.19: |\mathop{\mathbf{M}_{{-\frac{1}{2}}}\/}\nolimits\!\left(x+iy\right)| (principal value) for -3\leq x\leq 3 and -3\leq y\leq 3. There is a cut along the negative real axis. Magnify
Figure 11.3.20: |\mathop{\mathbf{M}_{{\frac{1}{2}}}\/}\nolimits\!\left(x+iy\right)| (principal value) for -3\leq x\leq 3 and -3\leq y\leq 3. There is a cut along the negative real axis. Magnify
Choose format for 3D interactive visualization
Format
 
Please see Visualization Help for details, and Customize to change your choice, or for other customizations.